The DOZZ formula from the path integral
Abstract We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-05-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP05(2018)094 |
_version_ | 1819070105662783488 |
---|---|
author | Antti Kupiainen Rémi Rhodes Vincent Vargas |
author_facet | Antti Kupiainen Rémi Rhodes Vincent Vargas |
author_sort | Antti Kupiainen |
collection | DOAJ |
description | Abstract We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by the authors and David. A crucial ingredient in our argument is a probabilistic derivation of the reflection relation in LCFT based on a refined tail analysis of Gaussian multiplicative chaos measures. |
first_indexed | 2024-12-21T17:00:39Z |
format | Article |
id | doaj.art-80425bd2fb4a42e8a988775f29622ebc |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-12-21T17:00:39Z |
publishDate | 2018-05-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-80425bd2fb4a42e8a988775f29622ebc2022-12-21T18:56:39ZengSpringerOpenJournal of High Energy Physics1029-84792018-05-012018512410.1007/JHEP05(2018)094The DOZZ formula from the path integralAntti Kupiainen0Rémi Rhodes1Vincent Vargas2University of Helsinki, Department of Mathematics and Statistics, P.O. FinlandUniversité Paris-Est Marne la Vallée, LAMAENS Ulm, DMAAbstract We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by the authors and David. A crucial ingredient in our argument is a probabilistic derivation of the reflection relation in LCFT based on a refined tail analysis of Gaussian multiplicative chaos measures.http://link.springer.com/article/10.1007/JHEP05(2018)094Conformal Field TheoryConformal Field Models in String Theory |
spellingShingle | Antti Kupiainen Rémi Rhodes Vincent Vargas The DOZZ formula from the path integral Journal of High Energy Physics Conformal Field Theory Conformal Field Models in String Theory |
title | The DOZZ formula from the path integral |
title_full | The DOZZ formula from the path integral |
title_fullStr | The DOZZ formula from the path integral |
title_full_unstemmed | The DOZZ formula from the path integral |
title_short | The DOZZ formula from the path integral |
title_sort | dozz formula from the path integral |
topic | Conformal Field Theory Conformal Field Models in String Theory |
url | http://link.springer.com/article/10.1007/JHEP05(2018)094 |
work_keys_str_mv | AT anttikupiainen thedozzformulafromthepathintegral AT remirhodes thedozzformulafromthepathintegral AT vincentvargas thedozzformulafromthepathintegral AT anttikupiainen dozzformulafromthepathintegral AT remirhodes dozzformulafromthepathintegral AT vincentvargas dozzformulafromthepathintegral |