The DOZZ formula from the path integral

Abstract We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by...

Full description

Bibliographic Details
Main Authors: Antti Kupiainen, Rémi Rhodes, Vincent Vargas
Format: Article
Language:English
Published: SpringerOpen 2018-05-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP05(2018)094
_version_ 1819070105662783488
author Antti Kupiainen
Rémi Rhodes
Vincent Vargas
author_facet Antti Kupiainen
Rémi Rhodes
Vincent Vargas
author_sort Antti Kupiainen
collection DOAJ
description Abstract We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by the authors and David. A crucial ingredient in our argument is a probabilistic derivation of the reflection relation in LCFT based on a refined tail analysis of Gaussian multiplicative chaos measures.
first_indexed 2024-12-21T17:00:39Z
format Article
id doaj.art-80425bd2fb4a42e8a988775f29622ebc
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-12-21T17:00:39Z
publishDate 2018-05-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-80425bd2fb4a42e8a988775f29622ebc2022-12-21T18:56:39ZengSpringerOpenJournal of High Energy Physics1029-84792018-05-012018512410.1007/JHEP05(2018)094The DOZZ formula from the path integralAntti Kupiainen0Rémi Rhodes1Vincent Vargas2University of Helsinki, Department of Mathematics and Statistics, P.O. FinlandUniversité Paris-Est Marne la Vallée, LAMAENS Ulm, DMAAbstract We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by the authors and David. A crucial ingredient in our argument is a probabilistic derivation of the reflection relation in LCFT based on a refined tail analysis of Gaussian multiplicative chaos measures.http://link.springer.com/article/10.1007/JHEP05(2018)094Conformal Field TheoryConformal Field Models in String Theory
spellingShingle Antti Kupiainen
Rémi Rhodes
Vincent Vargas
The DOZZ formula from the path integral
Journal of High Energy Physics
Conformal Field Theory
Conformal Field Models in String Theory
title The DOZZ formula from the path integral
title_full The DOZZ formula from the path integral
title_fullStr The DOZZ formula from the path integral
title_full_unstemmed The DOZZ formula from the path integral
title_short The DOZZ formula from the path integral
title_sort dozz formula from the path integral
topic Conformal Field Theory
Conformal Field Models in String Theory
url http://link.springer.com/article/10.1007/JHEP05(2018)094
work_keys_str_mv AT anttikupiainen thedozzformulafromthepathintegral
AT remirhodes thedozzformulafromthepathintegral
AT vincentvargas thedozzformulafromthepathintegral
AT anttikupiainen dozzformulafromthepathintegral
AT remirhodes dozzformulafromthepathintegral
AT vincentvargas dozzformulafromthepathintegral