An Optimization Approach to Multi-Sensor Operation for Multi-Context Recognition

Mobile devices and sensors have limited battery lifespans, limiting their feasibility for context recognition applications. As a result, there is a need to provide mechanisms for energy-efficient operation of sensors in settings where multiple contexts are monitored simultaneously. Past methods for...

Full description

Bibliographic Details
Main Authors: Raslan Kain, Hazem Hajj
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/20/6862
Description
Summary:Mobile devices and sensors have limited battery lifespans, limiting their feasibility for context recognition applications. As a result, there is a need to provide mechanisms for energy-efficient operation of sensors in settings where multiple contexts are monitored simultaneously. Past methods for efficient sensing operation have been hierarchical by first selecting the sensors with the least energy consumption, and then devising individual sensing schedules that trade-off energy and delays. The main limitation of the hierarchical approach is that it does not consider the combined impact of sensor scheduling and sensor selection. We aimed at addressing this limitation by considering the problem holistically and devising an optimization formulation that can simultaneously select the group of sensors while also considering the impact of their triggering schedule. The optimization solution is framed as a Viterbi algorithm that includes mathematical representations for multi-sensor reward functions and modeling of user behavior. Experiment results showed an average improvement of 31% compared to a hierarchical approach.
ISSN:1424-8220