Chromosome-Level Clam Genome Helps Elucidate the Molecular Basis of Adaptation to a Buried Lifestyle

Summary: Bivalve mollusks are economically important invertebrates that exhibit marked diversity in benthic lifestyle and provide valuable resources for understanding the molecular basis of adaptation to benthic life. In this report, we present a high-quality, chromosome-anchored reference genome of...

Full description

Bibliographic Details
Main Authors: Min Wei, Hongxing Ge, Changwei Shao, Xiwu Yan, Hongtao Nie, Haibao Duan, Xiaoting Liao, Min Zhang, Yihua Chen, Dongdong Zhang, Zhiguo Dong
Format: Article
Language:English
Published: Elsevier 2020-06-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004220303333
Description
Summary:Summary: Bivalve mollusks are economically important invertebrates that exhibit marked diversity in benthic lifestyle and provide valuable resources for understanding the molecular basis of adaptation to benthic life. In this report, we present a high-quality, chromosome-anchored reference genome of the Venus clam, Cyclina sinensis. The chromosome-level genome was assembled by Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, 10× Genomics, and high-throughput chromosome conformation capture technologies. The final genome assembly of C. sinensis is 903.2 Mb in size, with a contig N50 size of 2.6 Mb and a scaffold N50 size of 46.5 Mb. Enrichment analyses of significantly expanded and positively selected genes suggested evolutionary adaptation of this clam to buried life. In addition, a change in shell color represents another mechanism of adaptation to burial in sediment. The high-quality genome generated in this work provides a valuable resource for investigating the molecular mechanisms of adaptation to buried lifestyle.
ISSN:2589-0042