On the spectrum of r-orthogonal Latin squares of different orders

‎Two Latin squares of order n n are orthogonal if in their superposition‎, ‎each of the n 2 n2 ordered pairs of symbols occurs exactly once‎. ‎Colbourn‎, ‎Zhang and Zhu‎, ‎in a series of papers‎, ‎determined the integers r r for which there exist a pair of Latin squares of order n n having exactly...

Full description

Bibliographic Details
Main Authors: Hanieh Amjadi, Nasrin Soltankhah, Naji Shajarisales, Mehrdad Tahvilian
Format: Article
Language:English
Published: University of Isfahan 2016-06-01
Series:Transactions on Combinatorics
Subjects:
Online Access:http://www.combinatorics.ir/article_11665_93148cb85b3fdaf4b4abfe8412331040.pdf
_version_ 1819263943586086912
author Hanieh Amjadi
Nasrin Soltankhah
Naji Shajarisales
Mehrdad Tahvilian
author_facet Hanieh Amjadi
Nasrin Soltankhah
Naji Shajarisales
Mehrdad Tahvilian
author_sort Hanieh Amjadi
collection DOAJ
description ‎Two Latin squares of order n n are orthogonal if in their superposition‎, ‎each of the n 2 n2 ordered pairs of symbols occurs exactly once‎. ‎Colbourn‎, ‎Zhang and Zhu‎, ‎in a series of papers‎, ‎determined the integers r r for which there exist a pair of Latin squares of order n n having exactly r r different ordered pairs in their superposition‎. ‎Dukes and Howell defined the same problem for Latin squares of different orders n n and n+k n+k‎. ‎They obtained a non-trivial lower bound for r r and solved the problem for k≥2n3 k≥2n/3‎. ‎Here for k<2n3 k<2n/3‎, ‎some constructions are shown to realize many values of r r and for small cases (3≤n≤6) (3≤n≤6)‎, ‎the problem has been solved‎.
first_indexed 2024-12-23T20:21:37Z
format Article
id doaj.art-806bbdf1641a440eb9ee11c1017dbe74
institution Directory Open Access Journal
issn 2251-8657
2251-8665
language English
last_indexed 2024-12-23T20:21:37Z
publishDate 2016-06-01
publisher University of Isfahan
record_format Article
series Transactions on Combinatorics
spelling doaj.art-806bbdf1641a440eb9ee11c1017dbe742022-12-21T17:32:30ZengUniversity of IsfahanTransactions on Combinatorics2251-86572251-86652016-06-01524151On the spectrum of r-orthogonal Latin squares of different ordersHanieh Amjadi0Nasrin Soltankhah1Naji Shajarisales2Mehrdad Tahvilian3Alzahra UniversityAlzahra UniversityMax Planck Institute for Intelligent SystemsSharif University of Technology‎Two Latin squares of order n n are orthogonal if in their superposition‎, ‎each of the n 2 n2 ordered pairs of symbols occurs exactly once‎. ‎Colbourn‎, ‎Zhang and Zhu‎, ‎in a series of papers‎, ‎determined the integers r r for which there exist a pair of Latin squares of order n n having exactly r r different ordered pairs in their superposition‎. ‎Dukes and Howell defined the same problem for Latin squares of different orders n n and n+k n+k‎. ‎They obtained a non-trivial lower bound for r r and solved the problem for k≥2n3 k≥2n/3‎. ‎Here for k<2n3 k<2n/3‎, ‎some constructions are shown to realize many values of r r and for small cases (3≤n≤6) (3≤n≤6)‎, ‎the problem has been solved‎.http://www.combinatorics.ir/article_11665_93148cb85b3fdaf4b4abfe8412331040.pdf‎Latin square‎‎Orthogonal Latin square‎‎‎‎r‎ ‎‎r‎‎-Orthogonal Latin square‎‎‎r‎‎-Orthogonal Latin square‎‎r‎‎-Orthogonality spectrum‎‎Transversal
spellingShingle Hanieh Amjadi
Nasrin Soltankhah
Naji Shajarisales
Mehrdad Tahvilian
On the spectrum of r-orthogonal Latin squares of different orders
Transactions on Combinatorics
‎Latin square‎
‎Orthogonal Latin square‎
‎‎‎r‎ ‎‎r‎‎-Orthogonal Latin square‎
‎‎r‎‎-Orthogonal Latin square‎
‎r‎‎-Orthogonality spectrum‎
‎Transversal
title On the spectrum of r-orthogonal Latin squares of different orders
title_full On the spectrum of r-orthogonal Latin squares of different orders
title_fullStr On the spectrum of r-orthogonal Latin squares of different orders
title_full_unstemmed On the spectrum of r-orthogonal Latin squares of different orders
title_short On the spectrum of r-orthogonal Latin squares of different orders
title_sort on the spectrum of r orthogonal latin squares of different orders
topic ‎Latin square‎
‎Orthogonal Latin square‎
‎‎‎r‎ ‎‎r‎‎-Orthogonal Latin square‎
‎‎r‎‎-Orthogonal Latin square‎
‎r‎‎-Orthogonality spectrum‎
‎Transversal
url http://www.combinatorics.ir/article_11665_93148cb85b3fdaf4b4abfe8412331040.pdf
work_keys_str_mv AT haniehamjadi onthespectrumofrorthogonallatinsquaresofdifferentorders
AT nasrinsoltankhah onthespectrumofrorthogonallatinsquaresofdifferentorders
AT najishajarisales onthespectrumofrorthogonallatinsquaresofdifferentorders
AT mehrdadtahvilian onthespectrumofrorthogonallatinsquaresofdifferentorders