Will the Internet of Things Be Perovskite Powered? Energy Yield Measurement and Real-World Performance of Perovskite Solar Cells in Ambient Light Conditions

The number of interconnected devices, often referred to as the Internet of Things (IoT), is increasing at a considerable rate. It is inevitable therefore that so too will the energy demand. IoT describes a range of technologies such as sensors, software, smart meters, wearable devices, and communica...

Full description

Bibliographic Details
Main Authors: Suzanne K. Thomas, Adam Pockett, Krishna Seunarine, Michael Spence, Dimitrios Raptis, Simone Meroni, Trystan Watson, Matt Jones, Matthew J. Carnie
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:IoT
Subjects:
Online Access:https://www.mdpi.com/2624-831X/3/1/6
Description
Summary:The number of interconnected devices, often referred to as the Internet of Things (IoT), is increasing at a considerable rate. It is inevitable therefore that so too will the energy demand. IoT describes a range of technologies such as sensors, software, smart meters, wearable devices, and communication beacons for the purpose of connecting and exchanging data with other devices and systems over the internet. Often not located near a mains supply power source, these devices may be reliant on primary battery cells. To avoid the need to periodically replace these batteries, it makes sense to integrate the technologies with a photovoltaic (PV) cell to harvest ambient light, so that the technologies can be said to be self-powered. Perovskite solar cells have proven extremely efficient in low-light conditions but in the absence of ambient and low-light testing standards, or even a consensus on what is defined by “ambient light”, it is difficult to estimate the energy yield of a given PV technology in a given scenario. Ambient light harvesting is complex, subject to spectral considerations, and whether the light source is directly incident on the PV cell. Here, we present a realistic scenario-driven method for measuring the energy yield for a given PV technology in various situations in which an IoT device may be found. Furthermore, we show that laboratory-built p-i-n perovskite devices, for many scenarios, produce energy yields close to that of commercial GaAs solar cells. Finally, we demonstrate an IoT device, powered by a mesoporous carbon perovskite solar module and supercapacitor, and operating through several day–night cycles.
ISSN:2624-831X