Hyperspectral Imaging and Hierarchical PLS-DA Applied to Asbestos Recognition in Construction and Demolition Waste

Asbestos-Containing Materials (ACMs) are hazardous and prohibited to be sold or used as recycled materials. In the past, asbestos was widely used, together with cement, to produce “asbestos cement-based” products. During the recycling process of Construction and Demolition waste...

Full description

Bibliographic Details
Main Authors: Giuseppe Bonifazi, Giuseppe Capobianco, Silvia Serranti
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/21/4587
Description
Summary:Asbestos-Containing Materials (ACMs) are hazardous and prohibited to be sold or used as recycled materials. In the past, asbestos was widely used, together with cement, to produce “asbestos cement-based” products. During the recycling process of Construction and Demolition waste (C&DW), ACM must be collected and deposited separately from other wastes. One of the main aims of the recycling strategies applied to C&DW was thus to identify and separate ACM from C&DW (e.g., concrete and brick). However, to obtain a correct recovery of C&DW materials, control methodologies are necessary to evaluate the quality and the presence of harmful materials, such as ACM. HyperSpectral Imaging (HSI)-based sensing devices allow performing the full detection of materials constituting demolition waste. ACMs are, in fact, characterized by a spectral response that nakes them is different from the “simple” matrix of the material/s not embedding asbestos. The described HSI quality control approach is based on the utilization of a platform working in the short-wave infrared range (1000−2500 nm). The acquired hyperspectral images were analyzed by applying different chemometric methods: Principal Component Analysis for data exploration and hierarchical Partial Least-Square-Discriminant Analysis (PLS-DA) to build classification models. Following this approach, it was possible to set up a repeatable, reliable and efficient technique able to detect ACM presence inside a C&DW flow stream. Results showed that it is possible to discriminate and identify ACM inside C&DW. The recognition is potentially automatic, non-destructive and does not need any contact with the investigated products.
ISSN:2076-3417