Efficient Online Tracking-by-Detection With Kalman Filter

Visual tracking of multiple objects in videos has a promisingly broad application in manufacturing, construction, traffic, logistics, etc., especially in large-scale applications where it is not feasible to attach markers to many objects for traditional, marker-enabled tracking methods. This paper p...

Full description

Bibliographic Details
Main Authors: Siyuan Chen, Chenhui Shao
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9597516/
Description
Summary:Visual tracking of multiple objects in videos has a promisingly broad application in manufacturing, construction, traffic, logistics, etc., especially in large-scale applications where it is not feasible to attach markers to many objects for traditional, marker-enabled tracking methods. This paper presents a new approach, Kalman-intersection-over-union (KIOU) tracker, for multi-object tracking in videos that integrates a Kalman filter with IOU-based track association methods. The performance of the proposed KIOU tracker is quantitatively evaluated with UA-DETRAC, an open real-world multi-object detection and tracking benchmark. Experimental results show that the KIOU tracker outperforms the leading tracking methods. Additionally, the KIOU tracker has speed comparable to simple area overlap-based track association and quality close to methods with much higher computational costs, demonstrating its potential for online, real-time multi-object tracking.
ISSN:2169-3536