Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars
Diagnosis of atrial flutter caused by ablation of atrial fibrillation is complex due to ablation scars. This paper presents an approach to replicate the clinically measured flutter circuit in a dynamic computer model. In a first step, important anatomical features of the flutter circuit are extracte...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2015-09-01
|
Series: | Current Directions in Biomedical Engineering |
Subjects: | |
Online Access: | https://doi.org/10.1515/cdbme-2015-0098 |
Summary: | Diagnosis of atrial flutter caused by ablation of atrial fibrillation is complex due to ablation scars. This paper presents an approach to replicate the clinically measured flutter circuit in a dynamic computer model. In a first step, important anatomical features of the flutter circuit are extracted manually based on the clinical measurement. With the help of this information, the electrical excitation propagation is simulated on the atrial geometry using the fast marching method. The simulated flutter circuit is used to estimate the global and local conduction velocity by approximating it iteratively. The parameterized flutter simulation is supposed to support the physician during diagnosis and treatment of atrial flutter. |
---|---|
ISSN: | 2364-5504 |