Protein engineering with biosynthesized libraries from Bordetella bronchiseptica bacteriophage.

Phage display offers a powerful approach to engineer protein affinity. A naturally occurring analog to phage display, the Bordetella bronchiseptica bacteriophage (BP) employs a highly variable protein termed the major tropism determinant (Mtd) to recognize its dynamic host. Propagation of BP provide...

Full description

Bibliographic Details
Main Authors: Tom Z Yuan, Cathie M Overstreet, Issa S Moody, Gregory A Weiss
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3567102?pdf=render
Description
Summary:Phage display offers a powerful approach to engineer protein affinity. A naturally occurring analog to phage display, the Bordetella bronchiseptica bacteriophage (BP) employs a highly variable protein termed the major tropism determinant (Mtd) to recognize its dynamic host. Propagation of BP provides a self-made phage library (SMPL) with vast numbers of phage particles, each displaying a single Mtd variant. We report applying the diversity of the BP-SMPL to access a tyrosine-rich library of Mtd variants. Expression of the SMPL-engineered Mtd variant as a GST-bound fusion protein demonstrated specific binding to the target T4 lysozyme with dissociation constants in the sub-micromolar range. The results guide future experiments with SMPLs applied to protein engineering.
ISSN:1932-6203