β-catenin-IRP2-primed iron availability to mitochondrial metabolism is druggable for active β-catenin-mediated cancer

Abstract Background Although β-catenin signaling cascade is frequently altered in human cancers, targeting this pathway has not been approved for cancer treatment. Methods High-throughput screening of an FDA-approved drug library was conducted to identify therapeutics that selectively inhibited the...

Full description

Bibliographic Details
Main Authors: Yuting Wu, Shuhui Yang, Luyang Han, Kezhuo Shang, Baohui Zhang, Xiaochen Gai, Weiwei Deng, Fangming Liu, Hongbing Zhang
Format: Article
Language:English
Published: BMC 2023-01-01
Series:Journal of Translational Medicine
Subjects:
Online Access:https://doi.org/10.1186/s12967-023-03914-0
Description
Summary:Abstract Background Although β-catenin signaling cascade is frequently altered in human cancers, targeting this pathway has not been approved for cancer treatment. Methods High-throughput screening of an FDA-approved drug library was conducted to identify therapeutics that selectively inhibited the cells with activated β-catenin. Efficacy of iron chelator and mitochondrial inhibitor was evaluated for suppression of cell proliferation and tumorigenesis. Cellular chelatable iron levels were measured to gain insight into the potential vulnerability of β-catenin-activated cells to iron deprivation. Extracellular flux analysis of mitochondrial function was conducted to evaluate the downstream events of iron deprivation. Chromatin immunoprecipitation, real-time quantitative PCR and immunoblotting were performed to identify β-catenin targets. Depletion of iron-regulatory protein 2 (IRP2), a key regulator of cellular iron homeostasis, was carried out to elucidate its significance in β-catenin-activated cells. Online databases were analyzed for correlation between β-catenin activity and IRP2-TfR1 axis in human cancers. Results Iron chelators were identified as selective inhibitors against β-catenin-activated cells. Deferoxamine mesylate, an iron chelator, preferentially repressed β-catenin-activated cell proliferation and tumor formation in mice. Mechanically, β-catenin stimulated the transcription of IRP2 to increase labile iron level. Depletion of IRP2-sequered iron impaired β-catenin-invigorated mitochondrial function. Moreover, mitochondrial inhibitor S-Gboxin selectively reduced β-catenin-associated cell viability and tumor formation. Conclusions β-catenin/IRP2/iron stimulation of mitochondrial energetics is targetable vulnerability of β-catenin-potentiated cancer.
ISSN:1479-5876