Summary: | Pooneh Kia,1 Umme Ruman,2 Ariyati Retno Pratiwi,3 Mohd Zobir Hussein2 1Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Nanomaterials Synthesis and Characterization Laboratory (NSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 3Department of Oral Biology, Faculty of Dentistry, Universitas Brawijaya, Malang, IndonesiaCorrespondence: Mohd Zobir Hussein, Email mzobir@upm.edu.myAbstract: Tuberculosis (TB), derived from bacterium named Mycobacterium tuberculosis, has become one of the worst infectious and contagious illnesses in the world after HIV/AIDS. Long-term therapy, a high pill burden, lack of compliance, and strict management regimens are disadvantages which resulted in the extensively drug-resistant (XDR) along with multidrug-resistant (MDR) in the treatment of TB. One of the main thrust areas for the current scenario is the development of innovative intervention tools for early diagnosis and therapeutics towards Mycobacterium tuberculosis (MTB). This review discusses various nanotherapeutic agents that have been developed for MTB diagnostics, anti-TB drugs and vaccine. Undoubtedly, the concept of employing nanoparticles (NPs) has strong potential in this therapy and offers impressive outcomes to conquer the disease. Nanocarriers with different types were designed for drug delivery applications via various administration methods. Controlling and maintaining the drug release might be an example of the benefits of utilizing a drug-loaded NP in TB therapy over conventional drug therapy. Furthermore, the drug-encapsulated NP is able to lessen dosage regimen and can resolve the problems of insufficient compliance. Over the past decade, NPs were developed in both diagnostic and therapeutic methods, while on the other hand, the therapeutic system has increased. These “theranostic” NPs were designed for nuclear imaging, optical imaging, ultrasound, imaging with magnetic resonance and the computed tomography, which includes both single-photon computed tomography and positron emission tomography. More specifically, the current manuscript focuses on the status of therapeutic and diagnostic approaches in the treatment of TB.Keywords: tuberculosis, nanomedicine, theranostic, diagnostic, therapeutic
|