Location management for the supply of PD fluid via large neighborhood search based virus optimization algorithm

Abstract The facility location problem is extended by a new two-stage zero-one programming system (2S-ZOPS). It is a type of design optimization issue that exists in logistics implementations such as supply chain planning in healthcare or agriculture. Along with concerns regarding PD delivery time m...

Full description

Bibliographic Details
Main Authors: Walailak Atthirawong, Pongchanun Luangpaiboon
Format: Article
Language:English
Published: Nature Portfolio 2022-12-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-26385-7
Description
Summary:Abstract The facility location problem is extended by a new two-stage zero-one programming system (2S-ZOPS). It is a type of design optimization issue that exists in logistics implementations such as supply chain planning in healthcare or agriculture. Along with concerns regarding PD delivery time manner for connecting logistics centers and customers, recent studies have considered the zero-one location design model. This research discussed a route selection model for the 2S-ZOPS that did not exist in the published studies by taking into account the level of risk associated with physical appearance. The mathematical models were developed in response to a PD supply chain design that occurred in Thailand’s National Health Insurance Program. By combining the virus optimization algorithm (VOA) with a large neighborhood search (LNS), we created a hybrid metaheuristic method for solving the 2S-ZOPS. Experiments with real-world data demonstrated that the hybrid algorithm was efficient in terms of time consumption and solution quality, saving approximately 6% on total costs. The presented practice benefits not only the healthcare industry but also various other businesses.
ISSN:2045-2322