Vitamin D Inhibits Myogenic Cell Fusion and Expression of Fusogenic Genes

Vitamin D, a fat-soluble vitamin, is an important nutrient for tissue homeostasis and is recently gaining attention for its role in sarcopenia. Although several studies have focused on the role of vitamin D in muscle homeostasis, the molecular mechanism underlying its action on skeletal muscle remai...

Full description

Bibliographic Details
Main Authors: Tohru Hosoyama, Hiroki Iida, Minako Kawai-Takaishi, Ken Watanabe
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Nutrients
Subjects:
Online Access:https://www.mdpi.com/2072-6643/12/8/2192
Description
Summary:Vitamin D, a fat-soluble vitamin, is an important nutrient for tissue homeostasis and is recently gaining attention for its role in sarcopenia. Although several studies have focused on the role of vitamin D in muscle homeostasis, the molecular mechanism underlying its action on skeletal muscle remains unclear. This study investigated the role of vitamin D in myogenesis and muscle fiber maintenance in an immortalized mouse myogenic cell line. A high concentration of active vitamin D, 1α,25(OH)<sub>2</sub>D<sub>3</sub>, decreased the expression of myogenic regulatory factors (MRFs), <i>myf5</i> and <i>myogenin</i> in proliferating myoblasts. In addition, high concentration of vitamin D reduced myoblast-to-myoblast and myoblast-to-myotube fusion through the inhibition of <i>Tmem8c</i> (myomaker) and <i>Gm7325</i> (myomerger), which encode muscle-specific fusion-related micropeptides. A similar inhibitory effect of vitamin D was also observed in immortalized human myogenic cells. A high concentration of vitamin D also induced hypertrophy of multinucleated myotubes by stimulating protein anabolism. The results from this study indicated that vitamin D had both positive and negative effects on muscle homeostasis, such as in muscle regeneration and myofiber maintenance. Elderly individuals face a higher risk of falling and suffering fractures; hence, administration of vitamin D for treating fractures in the elderly could actually promote fusion impairment and, consequently, severe defects in muscle regeneration. Therefore, our results suggest that vitamin D replacement therapy should be used for prevention of age-related muscle loss, rather than for treatment of sarcopenia.
ISSN:2072-6643