An Extended Result on the Optimal Estimation Under the Minimum Error Entropy Criterion

The minimum error entropy (MEE) criterion has been successfully used in fields such as parameter estimation, system identification and the supervised machine learning. There is in general no explicit expression for the optimal MEE estimate unless some constraints on the conditional distribution are...

Full description

Bibliographic Details
Main Authors: Badong Chen, Guangmin Wang, Nanning Zheng, Jose C. Principe
Format: Article
Language:English
Published: MDPI AG 2014-04-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/16/4/2223
_version_ 1798003981373407232
author Badong Chen
Guangmin Wang
Nanning Zheng
Jose C. Principe
author_facet Badong Chen
Guangmin Wang
Nanning Zheng
Jose C. Principe
author_sort Badong Chen
collection DOAJ
description The minimum error entropy (MEE) criterion has been successfully used in fields such as parameter estimation, system identification and the supervised machine learning. There is in general no explicit expression for the optimal MEE estimate unless some constraints on the conditional distribution are imposed. A recent paper has proved that if the conditional density is conditionally symmetric and unimodal (CSUM), then the optimal MEE estimate (with Shannon entropy) equals the conditional median. In this study, we extend this result to the generalized MEE estimation where the optimality criterion is the Renyi entropy or equivalently, the α-order information potential (IP).
first_indexed 2024-04-11T12:16:14Z
format Article
id doaj.art-80c3024a337d474cb5233c6f3fd93eb2
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T12:16:14Z
publishDate 2014-04-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-80c3024a337d474cb5233c6f3fd93eb22022-12-22T04:24:19ZengMDPI AGEntropy1099-43002014-04-011642223223310.3390/e16042223e16042223An Extended Result on the Optimal Estimation Under the Minimum Error Entropy CriterionBadong Chen0Guangmin Wang1Nanning Zheng2Jose C. Principe3Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, ChinaInstitute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, ChinaInstitute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, ChinaDepartment of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USAThe minimum error entropy (MEE) criterion has been successfully used in fields such as parameter estimation, system identification and the supervised machine learning. There is in general no explicit expression for the optimal MEE estimate unless some constraints on the conditional distribution are imposed. A recent paper has proved that if the conditional density is conditionally symmetric and unimodal (CSUM), then the optimal MEE estimate (with Shannon entropy) equals the conditional median. In this study, we extend this result to the generalized MEE estimation where the optimality criterion is the Renyi entropy or equivalently, the α-order information potential (IP).http://www.mdpi.com/1099-4300/16/4/2223estimationminimum error entropyRenyi entropyinformation potential
spellingShingle Badong Chen
Guangmin Wang
Nanning Zheng
Jose C. Principe
An Extended Result on the Optimal Estimation Under the Minimum Error Entropy Criterion
Entropy
estimation
minimum error entropy
Renyi entropy
information potential
title An Extended Result on the Optimal Estimation Under the Minimum Error Entropy Criterion
title_full An Extended Result on the Optimal Estimation Under the Minimum Error Entropy Criterion
title_fullStr An Extended Result on the Optimal Estimation Under the Minimum Error Entropy Criterion
title_full_unstemmed An Extended Result on the Optimal Estimation Under the Minimum Error Entropy Criterion
title_short An Extended Result on the Optimal Estimation Under the Minimum Error Entropy Criterion
title_sort extended result on the optimal estimation under the minimum error entropy criterion
topic estimation
minimum error entropy
Renyi entropy
information potential
url http://www.mdpi.com/1099-4300/16/4/2223
work_keys_str_mv AT badongchen anextendedresultontheoptimalestimationundertheminimumerrorentropycriterion
AT guangminwang anextendedresultontheoptimalestimationundertheminimumerrorentropycriterion
AT nanningzheng anextendedresultontheoptimalestimationundertheminimumerrorentropycriterion
AT josecprincipe anextendedresultontheoptimalestimationundertheminimumerrorentropycriterion
AT badongchen extendedresultontheoptimalestimationundertheminimumerrorentropycriterion
AT guangminwang extendedresultontheoptimalestimationundertheminimumerrorentropycriterion
AT nanningzheng extendedresultontheoptimalestimationundertheminimumerrorentropycriterion
AT josecprincipe extendedresultontheoptimalestimationundertheminimumerrorentropycriterion