Construction and Analysis of Multi-Species Ecological Network, a Case Study of the Southeast Qinghai–Tibetan Plateau

In recent years, rapid global changes have accelerated the loss of habitats and fragmentation of landscapes, emerging as primary drivers of the alarming decline in global biodiversity. Through the construction of ecological networks (ENs) that simulate the interactions between animal and plant speci...

Full description

Bibliographic Details
Main Authors: Jiaqin Zeng, Kai Su, Chuang Li, Jie Lu, Xuebing Jiang, Yongfa You
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/14/11/2149
Description
Summary:In recent years, rapid global changes have accelerated the loss of habitats and fragmentation of landscapes, emerging as primary drivers of the alarming decline in global biodiversity. Through the construction of ecological networks (ENs) that simulate the interactions between animal and plant species with their environment, it is possible to mitigate landscape fragmentation and the loss of biodiversity. In this study, we focused on the ecologically diverse southeastern region of the Qinghai–Tibetan Plateau (QTP) as our research area and developed a comprehensive Multi-Species Ecological Network (MEN) consisting of ten species. Through employing complex network analysis methods, we thoroughly examined the intra-species and inter-species interactions within the MEN, integrating the findings with the natural characteristics of the study area to yield valuable insights. The results of our study revealed considerable spatial variations in the MEN. Specifically, the western and eastern regions experienced significant ecological resistance, leading to fragmented ecological sources and a limited connectivity of ecological corridors. Furthermore, the application of complex network analysis revealed inadequate connectivity and stability in specific localized areas within the MEN. This emphasizes the pressing requirement for effective ecological preservation plans. Through this study, our aim is to advance research on multi-species ecological spatial networks and to offer novel perspectives and methodologies for biodiversity conservation and habitat maintenance in the Qinghai–Tibetan Plateau.
ISSN:1999-4907