Investigation of Multi-Timescale Sea Level Variability near Jamaica in the Caribbean Using Satellite Altimetry Records

There is a dearth of studies characterizing historical sea level variability at the local scale for the islands in the Caribbean. This is due to the lack of reliable long term tide gauge data. There is, however, a significant need for such studies given that small islands are under increasing threat...

Full description

Bibliographic Details
Main Authors: Deron O. Maitland, Michael A. Taylor, Tannecia S. Stephenson
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/11/8/1499
_version_ 1827729492420853760
author Deron O. Maitland
Michael A. Taylor
Tannecia S. Stephenson
author_facet Deron O. Maitland
Michael A. Taylor
Tannecia S. Stephenson
author_sort Deron O. Maitland
collection DOAJ
description There is a dearth of studies characterizing historical sea level variability at the local scale for the islands in the Caribbean. This is due to the lack of reliable long term tide gauge data. There is, however, a significant need for such studies given that small islands are under increasing threat from rising sea levels, storm surges, and coastal flooding due to global warming. The growing length of satellite altimetry records provides a useful alternative to undertake sea level analyses. Altimetry data, spanning 1993–2019, are used herein to explore multi-timescale sea level variability near the south coast of Jamaica, in the northwest Caribbean. Caribbean basin dynamics and largescale forcing mechanisms, which could account for the variability, are also investigated. The results show that the average annual amplitude off the south coast of Jamaica is approximately 10 cm with a seasonal peak during the summer (July–August). The highest annual sea levels occur within the Caribbean storm season, adding to the annual risk. The annual trend over the 27 years is 3.3 ± 0.4 mm/yr when adjusted for Glacial Isostatic Adjustment (GIA), instrumental drift, and accounting for uncertainties. This is comparable to mean global sea level rise, but almost twice the prior estimates for the Caribbean which used altimetry data up to 2010. This suggests an accelerated rate of rise in the Caribbean over the last decade. Empirical Orthogonal Function (EOF) and correlation analyses show the long-term trend to be a basin-wide characteristic and linked to warming Caribbean sea surface temperatures (SSTs) over the period. When the altimetry data are detrended and deseasoned, the leading EOF mode has maximum loadings over the northwest Caribbean, including Jamaica, and exhibits interannual variability which correlates significantly with a tropical Pacific-tropical Atlantic SST gradient index, local wind strength, and the Caribbean Low Level Jet (CLLJ). Correlations with the El Niño Southern Oscillation (ENSO) in summer, seen in this and other studies, likely arise through the contribution of the ENSO to the SST gradient index and the ENSO’s modulation of the CLLJ peak strength in July. The results demonstrate the usefulness of altimetry data for characterizing sea level risk on various timescales for small islands. They also suggest the potential for developing predictive models geared towards reducing those risks.
first_indexed 2024-03-10T23:49:34Z
format Article
id doaj.art-80c68ae3cd97485ca61f63c12c26446d
institution Directory Open Access Journal
issn 2077-1312
language English
last_indexed 2024-03-10T23:49:34Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Journal of Marine Science and Engineering
spelling doaj.art-80c68ae3cd97485ca61f63c12c26446d2023-11-19T01:44:55ZengMDPI AGJournal of Marine Science and Engineering2077-13122023-07-01118149910.3390/jmse11081499Investigation of Multi-Timescale Sea Level Variability near Jamaica in the Caribbean Using Satellite Altimetry RecordsDeron O. Maitland0Michael A. Taylor1Tannecia S. Stephenson2Department of Physics, The University of the West Indies, Kingston 07 JMAAW15, JamaicaDepartment of Physics, The University of the West Indies, Kingston 07 JMAAW15, JamaicaDepartment of Physics, The University of the West Indies, Kingston 07 JMAAW15, JamaicaThere is a dearth of studies characterizing historical sea level variability at the local scale for the islands in the Caribbean. This is due to the lack of reliable long term tide gauge data. There is, however, a significant need for such studies given that small islands are under increasing threat from rising sea levels, storm surges, and coastal flooding due to global warming. The growing length of satellite altimetry records provides a useful alternative to undertake sea level analyses. Altimetry data, spanning 1993–2019, are used herein to explore multi-timescale sea level variability near the south coast of Jamaica, in the northwest Caribbean. Caribbean basin dynamics and largescale forcing mechanisms, which could account for the variability, are also investigated. The results show that the average annual amplitude off the south coast of Jamaica is approximately 10 cm with a seasonal peak during the summer (July–August). The highest annual sea levels occur within the Caribbean storm season, adding to the annual risk. The annual trend over the 27 years is 3.3 ± 0.4 mm/yr when adjusted for Glacial Isostatic Adjustment (GIA), instrumental drift, and accounting for uncertainties. This is comparable to mean global sea level rise, but almost twice the prior estimates for the Caribbean which used altimetry data up to 2010. This suggests an accelerated rate of rise in the Caribbean over the last decade. Empirical Orthogonal Function (EOF) and correlation analyses show the long-term trend to be a basin-wide characteristic and linked to warming Caribbean sea surface temperatures (SSTs) over the period. When the altimetry data are detrended and deseasoned, the leading EOF mode has maximum loadings over the northwest Caribbean, including Jamaica, and exhibits interannual variability which correlates significantly with a tropical Pacific-tropical Atlantic SST gradient index, local wind strength, and the Caribbean Low Level Jet (CLLJ). Correlations with the El Niño Southern Oscillation (ENSO) in summer, seen in this and other studies, likely arise through the contribution of the ENSO to the SST gradient index and the ENSO’s modulation of the CLLJ peak strength in July. The results demonstrate the usefulness of altimetry data for characterizing sea level risk on various timescales for small islands. They also suggest the potential for developing predictive models geared towards reducing those risks.https://www.mdpi.com/2077-1312/11/8/1499Caribbean sea levelsea level riseJamaicasatellite altimetryclimate change
spellingShingle Deron O. Maitland
Michael A. Taylor
Tannecia S. Stephenson
Investigation of Multi-Timescale Sea Level Variability near Jamaica in the Caribbean Using Satellite Altimetry Records
Journal of Marine Science and Engineering
Caribbean sea level
sea level rise
Jamaica
satellite altimetry
climate change
title Investigation of Multi-Timescale Sea Level Variability near Jamaica in the Caribbean Using Satellite Altimetry Records
title_full Investigation of Multi-Timescale Sea Level Variability near Jamaica in the Caribbean Using Satellite Altimetry Records
title_fullStr Investigation of Multi-Timescale Sea Level Variability near Jamaica in the Caribbean Using Satellite Altimetry Records
title_full_unstemmed Investigation of Multi-Timescale Sea Level Variability near Jamaica in the Caribbean Using Satellite Altimetry Records
title_short Investigation of Multi-Timescale Sea Level Variability near Jamaica in the Caribbean Using Satellite Altimetry Records
title_sort investigation of multi timescale sea level variability near jamaica in the caribbean using satellite altimetry records
topic Caribbean sea level
sea level rise
Jamaica
satellite altimetry
climate change
url https://www.mdpi.com/2077-1312/11/8/1499
work_keys_str_mv AT deronomaitland investigationofmultitimescalesealevelvariabilitynearjamaicainthecaribbeanusingsatellitealtimetryrecords
AT michaelataylor investigationofmultitimescalesealevelvariabilitynearjamaicainthecaribbeanusingsatellitealtimetryrecords
AT tanneciasstephenson investigationofmultitimescalesealevelvariabilitynearjamaicainthecaribbeanusingsatellitealtimetryrecords