A Method of approximation for a zero of the sum of maximally monotone mappings in Hilbert spaces
Our purpose of this study is to construct an algorithm for finding a zero of the sum of two maximally monotone mappings in Hilbert spaces and discus its convergence. The assumption that one of the mappings is α-inverse strongly monotone is dispensed with. In addition, we give some applications to th...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Emerald Publishing
2021-04-01
|
Series: | Arab Journal of Mathematical Sciences |
Subjects: | |
Online Access: | https://www.emerald.com/insight/content/doi/10.1016/j.ajmsc.2019.05.004/full/pdf |
Summary: | Our purpose of this study is to construct an algorithm for finding a zero of the sum of two maximally monotone mappings in Hilbert spaces and discus its convergence. The assumption that one of the mappings is α-inverse strongly monotone is dispensed with. In addition, we give some applications to the minimization problem. Our method of proof is of independent interest. Finally, a numerical example which supports our main result is presented. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings. |
---|---|
ISSN: | 1319-5166 2588-9214 |