Design of PLC Integrated Process Simulation Software for Steam Generator Using Matlab Simulink

This paper describes the work done in order to make Matlab Simulink based steam generator simulator in the simulation of a steam generator. The steam generator under this research is operated with the steam quality of 72%, O2 content is 1.2%, designed steam volume flow is 3600 barrel per day at a ma...

Full description

Bibliographic Details
Main Authors: Ikhtiander, Santoso Soekirno
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:E3S Web of Conferences
Online Access:https://doi.org/10.1051/e3sconf/20184301012
Description
Summary:This paper describes the work done in order to make Matlab Simulink based steam generator simulator in the simulation of a steam generator. The steam generator under this research is operated with the steam quality of 72%, O2 content is 1.2%, designed steam volume flow is 3600 barrel per day at a maximum and designed fuel gas volume flow is 1300 Thousand Standard Cubic Feet (MSCF) per day at a maximum. The simulator program of the steam generator is separated into individual components consisting of Burner, Radiant, Convection, Exhaust Stack, Feedwater Pump Discharge and Steam Discharge. Within the components, thermodynamics and heat transfer principles such as conduction, convection, radiation and also conservation of mass, momentum, and energy were applied to compute the pressure values, temperature values, and flow rate values of simulated field device based on the command and setpoint from PLC. The validation process has been done with the steam generator is operating in a steady state to the 10 important process parameters of the steam generator. The error percentage calculated from a difference between the simulation result value and the actual value from field data reference divide by actual value from field data reference. The error percentage results are as following : Fuel Gas Orifice Differential Pressure : 2.39%, Fuel Gas Pressure : 1.37%, Fuel Gas Temperature : 5.95%, Fuel Gas Flow Rate : 1.25%, Feedwater Orifice Differential Pressure : 1.94%, Feedwater Pressure : 1.54%, Feedwater Flow Rate : 0.92%, Steam Orifice Differential Pressure 3.26%, Steam Discharge Pressure 1.93% and Steam Quality : 0.05%.
ISSN:2267-1242