Magnetic material in mean-field dynamos driven by small scale helical flows
We perform kinematic simulations of dynamo action driven by a helical small scale flow of a conducting fluid in order to deduce mean-field properties of the combined induction action of small scale eddies. We examine two different flow patterns in the style of the G O Roberts flow but with a mean ve...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2014-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/16/7/073034 |
Summary: | We perform kinematic simulations of dynamo action driven by a helical small scale flow of a conducting fluid in order to deduce mean-field properties of the combined induction action of small scale eddies. We examine two different flow patterns in the style of the G O Roberts flow but with a mean vertical component and with internal fixtures that are modelled by regions with vanishing flow. These fixtures represent either rods that lie in the center of individual eddies, or internal dividing walls that provide a separation of the eddies from each other. The fixtures can be made of magnetic material with a relative permeability larger than one which can alter the dynamo behavior. The investigations are motivated by the widely unknown induction effects of the forced helical flow that is used in the core of liquid sodium cooled fast reactors, and from the key role of soft iron impellers in the von-Kármán-sodium dynamo. For both examined flow configurations the consideration of magnetic material within the fluid flow causes a reduction of the critical magnetic Reynolds number of up to 25%. The development of the growth-rate in the limit of the largest achievable permeabilities suggests no further significant reduction for even larger values of the permeability. In order to study the dynamo behavior of systems that consist of tens of thousands of helical cells we resort to the mean-field dynamo theory (Krause and Rädler 1980 Mean-field Magnetohydrodynamics and Dynamo Theory (Oxford: Pergamon)) in which the action of the small scale flow is parameterized in terms of an α - and β -effect. We compute the relevant elements of the α - and the β -tensor using the so called testfield method. We find a reasonable agreement between the fully resolved models and the corresponding mean-field models for wall or rod materials in the considered range $1\leqslant {{\mu }_{{\rm r}}}\leqslant 20$ . Our results may be used for the development of global large scale models with recirculation flow and realistic boundary conditions. |
---|---|
ISSN: | 1367-2630 |