Berauti Spectral Subtraction dengan Gaussian Window untuk Peningkatan Akurasi Pengenalan Ucapan Berderau

The accuracy of speech recognition system decreases when used on a noisy speech. Therefore, the speech recognition system needs to be supported by a speech enhancement method. This study proposes Berauti spectral subtraction method that uses gaussian window and minimum statistics noise estimation in...

Full description

Bibliographic Details
Main Authors: Fitrilina Fitrilina, Winda Alfin, Fajar Afriyansah
Format: Article
Language:English
Published: Universitas Andalas 2018-11-01
Series:Jurnal Nasional Teknik Elektro
Subjects:
Online Access:http://jnte.ft.unand.ac.id/index.php/jnte/article/view/497/361
_version_ 1818577283331391488
author Fitrilina Fitrilina
Winda Alfin
Fajar Afriyansah
author_facet Fitrilina Fitrilina
Winda Alfin
Fajar Afriyansah
author_sort Fitrilina Fitrilina
collection DOAJ
description The accuracy of speech recognition system decreases when used on a noisy speech. Therefore, the speech recognition system needs to be supported by a speech enhancement method. This study proposes Berauti spectral subtraction method that uses gaussian window and minimum statistics noise estimation in order to improve the quality of noisy speech hence increase the accuracy of noisy speech recognition. Speech recognition system is built using the Hidden Markov Model Toolkit (HTK). This study applied three types of noise, five SNR levels, six oversubtraction values and four sidelobe gaussian window attenuation values with 1500 speech signals. Improvement of speech recognition accuracy using Gaussian window is compared with Hamming window. The results of the study shows that sidelobe and oversubtraction attenuation values affects recognition accuracy. The average speech recognition accuracy using gaussian window improve about 36.4% which is obtained at oversubtraction 4.75 and sidelobe attenuation = 1.5. Whereas, application of hamming window improves the accuracy about 18,7 % which is obtained at oversubtraction 2.5. Spectral subtraction using gaussian window or hamming window is able to improve the speech recognition accuracy, but gaussian window is better than hamming window.
first_indexed 2024-12-16T06:27:27Z
format Article
id doaj.art-80f0fb8143cd4ed2b310b584d78d5f27
institution Directory Open Access Journal
issn 2302-2949
2407-7267
language English
last_indexed 2024-12-16T06:27:27Z
publishDate 2018-11-01
publisher Universitas Andalas
record_format Article
series Jurnal Nasional Teknik Elektro
spelling doaj.art-80f0fb8143cd4ed2b310b584d78d5f272022-12-21T22:40:59ZengUniversitas AndalasJurnal Nasional Teknik Elektro2302-29492407-72672018-11-0173175182Berauti Spectral Subtraction dengan Gaussian Window untuk Peningkatan Akurasi Pengenalan Ucapan BerderauFitrilina Fitrilina0Winda Alfin1Fajar Afriyansah2Universitas Andalas Universitas Andalas Universitas Andalas The accuracy of speech recognition system decreases when used on a noisy speech. Therefore, the speech recognition system needs to be supported by a speech enhancement method. This study proposes Berauti spectral subtraction method that uses gaussian window and minimum statistics noise estimation in order to improve the quality of noisy speech hence increase the accuracy of noisy speech recognition. Speech recognition system is built using the Hidden Markov Model Toolkit (HTK). This study applied three types of noise, five SNR levels, six oversubtraction values and four sidelobe gaussian window attenuation values with 1500 speech signals. Improvement of speech recognition accuracy using Gaussian window is compared with Hamming window. The results of the study shows that sidelobe and oversubtraction attenuation values affects recognition accuracy. The average speech recognition accuracy using gaussian window improve about 36.4% which is obtained at oversubtraction 4.75 and sidelobe attenuation = 1.5. Whereas, application of hamming window improves the accuracy about 18,7 % which is obtained at oversubtraction 2.5. Spectral subtraction using gaussian window or hamming window is able to improve the speech recognition accuracy, but gaussian window is better than hamming window.http://jnte.ft.unand.ac.id/index.php/jnte/article/view/497/361Berauti spectral subtractiongaussian windowpengenalan ucapan
spellingShingle Fitrilina Fitrilina
Winda Alfin
Fajar Afriyansah
Berauti Spectral Subtraction dengan Gaussian Window untuk Peningkatan Akurasi Pengenalan Ucapan Berderau
Jurnal Nasional Teknik Elektro
Berauti spectral subtraction
gaussian window
pengenalan ucapan
title Berauti Spectral Subtraction dengan Gaussian Window untuk Peningkatan Akurasi Pengenalan Ucapan Berderau
title_full Berauti Spectral Subtraction dengan Gaussian Window untuk Peningkatan Akurasi Pengenalan Ucapan Berderau
title_fullStr Berauti Spectral Subtraction dengan Gaussian Window untuk Peningkatan Akurasi Pengenalan Ucapan Berderau
title_full_unstemmed Berauti Spectral Subtraction dengan Gaussian Window untuk Peningkatan Akurasi Pengenalan Ucapan Berderau
title_short Berauti Spectral Subtraction dengan Gaussian Window untuk Peningkatan Akurasi Pengenalan Ucapan Berderau
title_sort berauti spectral subtraction dengan gaussian window untuk peningkatan akurasi pengenalan ucapan berderau
topic Berauti spectral subtraction
gaussian window
pengenalan ucapan
url http://jnte.ft.unand.ac.id/index.php/jnte/article/view/497/361
work_keys_str_mv AT fitrilinafitrilina berautispectralsubtractiondengangaussianwindowuntukpeningkatanakurasipengenalanucapanberderau
AT windaalfin berautispectralsubtractiondengangaussianwindowuntukpeningkatanakurasipengenalanucapanberderau
AT fajarafriyansah berautispectralsubtractiondengangaussianwindowuntukpeningkatanakurasipengenalanucapanberderau