Summary: | An elastic beam equation (EBEq) described by a fourth-order fractional difference equation is proposed in this work with three-point boundary conditions involving the Riemann–Liouville fractional difference operator. New sufficient conditions ensuring the solutions’ existence and uniqueness of the proposed problem are established. The findings are obtained by employing properties of discrete fractional equations, Banach contraction, and Brouwer fixed-point theorems. Further, we discuss our problem’s results concerning <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">HU</mi></semantics></math></inline-formula>), generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">GHU</mi></semantics></math></inline-formula>), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>assias (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">HUR</mi></semantics></math></inline-formula>), and generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>assias (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">GHUR</mi></semantics></math></inline-formula>) stability. Specific examples with graphs and numerical experiment are presented to demonstrate the effectiveness of our results.
|