The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation

An elastic beam equation (EBEq) described by a fourth-order fractional difference equation is proposed in this work with three-point boundary conditions involving the Riemann–Liouville fractional difference operator. New sufficient conditions ensuring the solutions’ existence and uniqueness of the p...

Full description

Bibliographic Details
Main Authors: Jehad Alzabut, A. George Maria Selvam, R. Dhineshbabu, Mohammed K. A. Kaabar
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/5/789
_version_ 1797535368382251008
author Jehad Alzabut
A. George Maria Selvam
R. Dhineshbabu
Mohammed K. A. Kaabar
author_facet Jehad Alzabut
A. George Maria Selvam
R. Dhineshbabu
Mohammed K. A. Kaabar
author_sort Jehad Alzabut
collection DOAJ
description An elastic beam equation (EBEq) described by a fourth-order fractional difference equation is proposed in this work with three-point boundary conditions involving the Riemann–Liouville fractional difference operator. New sufficient conditions ensuring the solutions’ existence and uniqueness of the proposed problem are established. The findings are obtained by employing properties of discrete fractional equations, Banach contraction, and Brouwer fixed-point theorems. Further, we discuss our problem’s results concerning <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">HU</mi></semantics></math></inline-formula>), generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">GHU</mi></semantics></math></inline-formula>), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>assias (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">HUR</mi></semantics></math></inline-formula>), and generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>assias (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">GHUR</mi></semantics></math></inline-formula>) stability. Specific examples with graphs and numerical experiment are presented to demonstrate the effectiveness of our results.
first_indexed 2024-03-10T11:44:23Z
format Article
id doaj.art-80f2ab81569b41bbae4f5a78e0a656b7
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T11:44:23Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-80f2ab81569b41bbae4f5a78e0a656b72023-11-21T18:13:52ZengMDPI AGSymmetry2073-89942021-05-0113578910.3390/sym13050789The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam EquationJehad Alzabut0A. George Maria Selvam1R. Dhineshbabu2Mohammed K. A. Kaabar3Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi ArabiaDepartment of Mathematics, Sacred Heart College (Autonomous), Tirupattur 635 601, Tamil Nadu, IndiaDepartment of Mathematics, Sri Venkateswara College of Engineering and Technology (Autonomous), Chittoor 517 127, Andhra Pradesh, IndiaDepartment of Mathematics and Statistics, Washington State University, Pullman, WA 99163, USAAn elastic beam equation (EBEq) described by a fourth-order fractional difference equation is proposed in this work with three-point boundary conditions involving the Riemann–Liouville fractional difference operator. New sufficient conditions ensuring the solutions’ existence and uniqueness of the proposed problem are established. The findings are obtained by employing properties of discrete fractional equations, Banach contraction, and Brouwer fixed-point theorems. Further, we discuss our problem’s results concerning <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">HU</mi></semantics></math></inline-formula>), generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">GHU</mi></semantics></math></inline-formula>), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>assias (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">HUR</mi></semantics></math></inline-formula>), and generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>yers–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>lam–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>assias (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">GHUR</mi></semantics></math></inline-formula>) stability. Specific examples with graphs and numerical experiment are presented to demonstrate the effectiveness of our results.https://www.mdpi.com/2073-8994/13/5/789Riemann–Liouville fractional difference operatorboundary value problemdiscrete fractional calculusexistence and uniquenessUlam stabilityelastic beam problem
spellingShingle Jehad Alzabut
A. George Maria Selvam
R. Dhineshbabu
Mohammed K. A. Kaabar
The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation
Symmetry
Riemann–Liouville fractional difference operator
boundary value problem
discrete fractional calculus
existence and uniqueness
Ulam stability
elastic beam problem
title The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation
title_full The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation
title_fullStr The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation
title_full_unstemmed The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation
title_short The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation
title_sort existence uniqueness and stability analysis of the discrete fractional three point boundary value problem for the elastic beam equation
topic Riemann–Liouville fractional difference operator
boundary value problem
discrete fractional calculus
existence and uniqueness
Ulam stability
elastic beam problem
url https://www.mdpi.com/2073-8994/13/5/789
work_keys_str_mv AT jehadalzabut theexistenceuniquenessandstabilityanalysisofthediscretefractionalthreepointboundaryvalueproblemfortheelasticbeamequation
AT ageorgemariaselvam theexistenceuniquenessandstabilityanalysisofthediscretefractionalthreepointboundaryvalueproblemfortheelasticbeamequation
AT rdhineshbabu theexistenceuniquenessandstabilityanalysisofthediscretefractionalthreepointboundaryvalueproblemfortheelasticbeamequation
AT mohammedkakaabar theexistenceuniquenessandstabilityanalysisofthediscretefractionalthreepointboundaryvalueproblemfortheelasticbeamequation
AT jehadalzabut existenceuniquenessandstabilityanalysisofthediscretefractionalthreepointboundaryvalueproblemfortheelasticbeamequation
AT ageorgemariaselvam existenceuniquenessandstabilityanalysisofthediscretefractionalthreepointboundaryvalueproblemfortheelasticbeamequation
AT rdhineshbabu existenceuniquenessandstabilityanalysisofthediscretefractionalthreepointboundaryvalueproblemfortheelasticbeamequation
AT mohammedkakaabar existenceuniquenessandstabilityanalysisofthediscretefractionalthreepointboundaryvalueproblemfortheelasticbeamequation