The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation
An elastic beam equation (EBEq) described by a fourth-order fractional difference equation is proposed in this work with three-point boundary conditions involving the Riemann–Liouville fractional difference operator. New sufficient conditions ensuring the solutions’ existence and uniqueness of the p...
Main Authors: | Jehad Alzabut, A. George Maria Selvam, R. Dhineshbabu, Mohammed K. A. Kaabar |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/5/789 |
Similar Items
-
Discrete fractional order two-point boundary value problem with some relevant physical applications
by: A. George Maria Selvam, et al.
Published: (2020-09-01) -
Existence and Uniqueness of Some Unconventional Fractional Sturm–Liouville Equations
by: Leila Gholizadeh Zivlaei, et al.
Published: (2024-03-01) -
Some existence, uniqueness results on positive solutions for a fractional differential equation with infinite-point boundary conditions
by: Chengbo Zhai, et al.
Published: (2017-07-01) -
A Caputo discrete fractional-order thermostat model with one and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality
by: Jehad Alzabut, et al.
Published: (2022-05-01) -
Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions
by: Akbar Zada, et al.
Published: (2019-01-01)