Spin Hall and inverse spin galvanic effects in graphene with strong interfacial spin-orbit coupling: A quasi-classical Green's function approach

Van der Waals heterostructures assembled from atomically thin crystals are ideal model systems to study spin-orbital coupled transport because they exhibit a strong interplay between spin, lattice, and valley degrees of freedom that can be manipulated by strain, electric bias, and proximity effects....

Full description

Bibliographic Details
Main Authors: Carmen Monaco, Aires Ferreira, Roberto Raimondi
Format: Article
Language:English
Published: American Physical Society 2021-08-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.3.033137
_version_ 1797210936904253440
author Carmen Monaco
Aires Ferreira
Roberto Raimondi
author_facet Carmen Monaco
Aires Ferreira
Roberto Raimondi
author_sort Carmen Monaco
collection DOAJ
description Van der Waals heterostructures assembled from atomically thin crystals are ideal model systems to study spin-orbital coupled transport because they exhibit a strong interplay between spin, lattice, and valley degrees of freedom that can be manipulated by strain, electric bias, and proximity effects. The recently predicted spin-helical regime in graphene on transition metal dichalcogenides, in which spin and pseudospin degrees of freedom are locked together [Offidani et al., Phys. Rev. Lett. 119, 196801 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.196801] suggests their potential application in spintronics. Here, by deriving an Eilenberger equation for the quasiclassical Green's function of two-dimensional Dirac fermions in the presence of spin-orbit coupling (SOC) and scalar disorder, we obtain analytical expressions for the dc spin galvanic susceptibility and spin Hall conductivity in the spin-helical regime. Our results disclose a sign change in the spin Hall angle (SHA) when the Fermi energy relative to the Dirac point matches the Bychkov-Rashba energy scale, irrespective of the magnitude of the spin-valley interaction imprinted on the graphene layer. The behavior of the SHA is connected to a reversal of the total internal angular momentum of Bloch electrons that reflects the spin-pseudospin entanglement induced by SOC. We also show that the charge-to-spin conversion efficiency reaches a maximum when the Fermi level lies at the edge of the spin-minority band in agreement with previous findings. Both features are fingerprints of spin-helical Dirac fermions and suggest a direct way to estimate the strength of proximity-induced SOC from transport data. The relevance of these findings for interpreting recent spin-charge conversion measurements in nonlocal spin-valve geometry is also discussed.
first_indexed 2024-04-24T10:18:31Z
format Article
id doaj.art-80f78b3ab5484f56a02dd13cf88c9801
institution Directory Open Access Journal
issn 2643-1564
language English
last_indexed 2024-04-24T10:18:31Z
publishDate 2021-08-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj.art-80f78b3ab5484f56a02dd13cf88c98012024-04-12T17:12:44ZengAmerican Physical SocietyPhysical Review Research2643-15642021-08-013303313710.1103/PhysRevResearch.3.033137Spin Hall and inverse spin galvanic effects in graphene with strong interfacial spin-orbit coupling: A quasi-classical Green's function approachCarmen MonacoAires FerreiraRoberto RaimondiVan der Waals heterostructures assembled from atomically thin crystals are ideal model systems to study spin-orbital coupled transport because they exhibit a strong interplay between spin, lattice, and valley degrees of freedom that can be manipulated by strain, electric bias, and proximity effects. The recently predicted spin-helical regime in graphene on transition metal dichalcogenides, in which spin and pseudospin degrees of freedom are locked together [Offidani et al., Phys. Rev. Lett. 119, 196801 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.196801] suggests their potential application in spintronics. Here, by deriving an Eilenberger equation for the quasiclassical Green's function of two-dimensional Dirac fermions in the presence of spin-orbit coupling (SOC) and scalar disorder, we obtain analytical expressions for the dc spin galvanic susceptibility and spin Hall conductivity in the spin-helical regime. Our results disclose a sign change in the spin Hall angle (SHA) when the Fermi energy relative to the Dirac point matches the Bychkov-Rashba energy scale, irrespective of the magnitude of the spin-valley interaction imprinted on the graphene layer. The behavior of the SHA is connected to a reversal of the total internal angular momentum of Bloch electrons that reflects the spin-pseudospin entanglement induced by SOC. We also show that the charge-to-spin conversion efficiency reaches a maximum when the Fermi level lies at the edge of the spin-minority band in agreement with previous findings. Both features are fingerprints of spin-helical Dirac fermions and suggest a direct way to estimate the strength of proximity-induced SOC from transport data. The relevance of these findings for interpreting recent spin-charge conversion measurements in nonlocal spin-valve geometry is also discussed.http://doi.org/10.1103/PhysRevResearch.3.033137
spellingShingle Carmen Monaco
Aires Ferreira
Roberto Raimondi
Spin Hall and inverse spin galvanic effects in graphene with strong interfacial spin-orbit coupling: A quasi-classical Green's function approach
Physical Review Research
title Spin Hall and inverse spin galvanic effects in graphene with strong interfacial spin-orbit coupling: A quasi-classical Green's function approach
title_full Spin Hall and inverse spin galvanic effects in graphene with strong interfacial spin-orbit coupling: A quasi-classical Green's function approach
title_fullStr Spin Hall and inverse spin galvanic effects in graphene with strong interfacial spin-orbit coupling: A quasi-classical Green's function approach
title_full_unstemmed Spin Hall and inverse spin galvanic effects in graphene with strong interfacial spin-orbit coupling: A quasi-classical Green's function approach
title_short Spin Hall and inverse spin galvanic effects in graphene with strong interfacial spin-orbit coupling: A quasi-classical Green's function approach
title_sort spin hall and inverse spin galvanic effects in graphene with strong interfacial spin orbit coupling a quasi classical green s function approach
url http://doi.org/10.1103/PhysRevResearch.3.033137
work_keys_str_mv AT carmenmonaco spinhallandinversespingalvaniceffectsingraphenewithstronginterfacialspinorbitcouplingaquasiclassicalgreensfunctionapproach
AT airesferreira spinhallandinversespingalvaniceffectsingraphenewithstronginterfacialspinorbitcouplingaquasiclassicalgreensfunctionapproach
AT robertoraimondi spinhallandinversespingalvaniceffectsingraphenewithstronginterfacialspinorbitcouplingaquasiclassicalgreensfunctionapproach