Combining Four Gaussian Lasers Using Silicon Nitride MMI Slot Waveguide Structure

Transceivers that function under a high-speed rate (over 200 Gb/s) need to have more optical power ability to overcome the power losses which is a reason for using a larger RF line connected to a Mach–Zehnder modulator for obtaining high data bitrate communication. One option to solve this problem i...

Full description

Bibliographic Details
Main Authors: Netanel Katash, Salman Khateeb, Dror Malka
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/13/10/1680
Description
Summary:Transceivers that function under a high-speed rate (over 200 Gb/s) need to have more optical power ability to overcome the power losses which is a reason for using a larger RF line connected to a Mach–Zehnder modulator for obtaining high data bitrate communication. One option to solve this problem is to use a complex laser with a power of over 100 milliwatts. However, this option can be complicated for a photonic chip circuit due to the high cost and nonlinear effects, which can increase the system noise. Therefore, we propose a better solution to increase the power level using a 4 × 1 power combiner which is based on multimode interference (MMI) using a silicon nitride (Si<sub>3</sub>N<sub>4</sub>) slot waveguide structure. The combiner was solved using the full-vectorial beam propagation method (FV-BPM), and the key parameters were analyzed using Matlab script codes. Results show that the combiner can function well over the O-band spectrum with high combiner efficiency of at least 98.2% after a short light coupling propagation of 28.78 μm. This new study shows how it is possible to obtain a transverse electric mode solution for four Gaussian coherent sources using Si<sub>3</sub>N<sub>4</sub> slot waveguide technology. Furthermore, the back reflection (BR) was solved using a finite difference time-domain method, and the result shows a low BR of 40.15 dB. This new technology can be utilized for combining multiple coherent sources that work with a photonic chip at the O-band range.
ISSN:2072-666X