Deep deterministic portfolio optimization

Can deep reinforcement learning algorithms be exploited as solvers for optimal trading strategies? The aim of this work is to test reinforcement learning algorithms on conceptually simple, but mathematically non-trivial, trading environments. The environments are chosen such that an optimal or close...

Full description

Bibliographic Details
Main Authors: Ayman Chaouki, Stephen Hardiman, Christian Schmidt, Emmanuel Sérié, Joachim de Lataillade
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2020-11-01
Series:Journal of Finance and Data Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405918820300118
_version_ 1797203169308049408
author Ayman Chaouki
Stephen Hardiman
Christian Schmidt
Emmanuel Sérié
Joachim de Lataillade
author_facet Ayman Chaouki
Stephen Hardiman
Christian Schmidt
Emmanuel Sérié
Joachim de Lataillade
author_sort Ayman Chaouki
collection DOAJ
description Can deep reinforcement learning algorithms be exploited as solvers for optimal trading strategies? The aim of this work is to test reinforcement learning algorithms on conceptually simple, but mathematically non-trivial, trading environments. The environments are chosen such that an optimal or close-to-optimal trading strategy is known. We study the deep deterministic policy gradient algorithm and show that such a reinforcement learning agent can successfully recover the essential features of the optimal trading strategies and achieve close-to-optimal rewards.
first_indexed 2024-04-24T08:15:03Z
format Article
id doaj.art-81017f6f729046e6ad4ff5876a37b0ec
institution Directory Open Access Journal
issn 2405-9188
language English
last_indexed 2024-04-24T08:15:03Z
publishDate 2020-11-01
publisher KeAi Communications Co., Ltd.
record_format Article
series Journal of Finance and Data Science
spelling doaj.art-81017f6f729046e6ad4ff5876a37b0ec2024-04-17T04:08:46ZengKeAi Communications Co., Ltd.Journal of Finance and Data Science2405-91882020-11-0161630Deep deterministic portfolio optimizationAyman Chaouki0Stephen Hardiman1Christian Schmidt2Emmanuel Sérié3Joachim de Lataillade4Capital Fund Management, 23 rue de l'Université, 75007, Paris, France; École Centrale-Suplec, Gif-Sur-Yvette, FranceCapital Fund Management, 23 rue de l'Université, 75007, Paris, FranceCapital Fund Management, 23 rue de l'Université, 75007, Paris, France; Chair of Econophysics and Complex Systems, École Polytechnique, Palaiseau, FranceCapital Fund Management, 23 rue de l'Université, 75007, Paris, France; Corresponding author.Capital Fund Management, 23 rue de l'Université, 75007, Paris, FranceCan deep reinforcement learning algorithms be exploited as solvers for optimal trading strategies? The aim of this work is to test reinforcement learning algorithms on conceptually simple, but mathematically non-trivial, trading environments. The environments are chosen such that an optimal or close-to-optimal trading strategy is known. We study the deep deterministic policy gradient algorithm and show that such a reinforcement learning agent can successfully recover the essential features of the optimal trading strategies and achieve close-to-optimal rewards.http://www.sciencedirect.com/science/article/pii/S2405918820300118Reinforcement learningStochastic controlPortfolio optimization
spellingShingle Ayman Chaouki
Stephen Hardiman
Christian Schmidt
Emmanuel Sérié
Joachim de Lataillade
Deep deterministic portfolio optimization
Journal of Finance and Data Science
Reinforcement learning
Stochastic control
Portfolio optimization
title Deep deterministic portfolio optimization
title_full Deep deterministic portfolio optimization
title_fullStr Deep deterministic portfolio optimization
title_full_unstemmed Deep deterministic portfolio optimization
title_short Deep deterministic portfolio optimization
title_sort deep deterministic portfolio optimization
topic Reinforcement learning
Stochastic control
Portfolio optimization
url http://www.sciencedirect.com/science/article/pii/S2405918820300118
work_keys_str_mv AT aymanchaouki deepdeterministicportfoliooptimization
AT stephenhardiman deepdeterministicportfoliooptimization
AT christianschmidt deepdeterministicportfoliooptimization
AT emmanuelserie deepdeterministicportfoliooptimization
AT joachimdelataillade deepdeterministicportfoliooptimization