Multiaxial Deformations of Elastomeric Skins for Morphing Wing Applications: Theoretical Modeling and Experimental Investigations

An elastomeric class of flexible skin-based polymorphing wings changes its configuration to maximize performance at radically different flight conditions. One of the key design challenges for such an aircraft technology is the multiaxial deformation characterization and modeling of nonlinear elastom...

Full description

Bibliographic Details
Main Authors: Dilshad Ahmad, Deepak Kumar, Rafic M. Ajaj
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/22/4891
Description
Summary:An elastomeric class of flexible skin-based polymorphing wings changes its configuration to maximize performance at radically different flight conditions. One of the key design challenges for such an aircraft technology is the multiaxial deformation characterization and modeling of nonlinear elastomeric skins of polymorphing wings. In the current study, three elastomeric materials, Latex, Oppo, and Ecoflex, are experimentally characterized and modeled under all possible deformation modes such as uniaxial, pure shear, biaxial, and equibiaxial relevant for flexible skin-based morphing wing applications. Additionally, a novel material model with four material constants is proposed to model the considered elastomers-based morphing wings keeping all the material parameters constant for all the possible deformation modes. The present experimental and theoretical study provides a concise comparative study of the three elastomers used in the morphing wings tested in all possible deformation modes.
ISSN:2073-4360