Inequalities and Reverse Inequalities for the Joint <i>A</i>-Numerical Radius of Operators

In this paper, we aim to establish several estimates concerning the generalized Euclidean operator radius of <i>d</i>-tuples of <i>A</i>-bounded linear operators acting on a complex Hilbert space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&qu...

Full description

Bibliographic Details
Main Authors: Najla Altwaijry, Silvestru Sever Dragomir, Kais Feki
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/3/316
_version_ 1797613494703489024
author Najla Altwaijry
Silvestru Sever Dragomir
Kais Feki
author_facet Najla Altwaijry
Silvestru Sever Dragomir
Kais Feki
author_sort Najla Altwaijry
collection DOAJ
description In this paper, we aim to establish several estimates concerning the generalized Euclidean operator radius of <i>d</i>-tuples of <i>A</i>-bounded linear operators acting on a complex Hilbert space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>, which leads to the special case of the well-known <i>A</i>-numerical radius for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Here, <i>A</i> is a positive operator on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>. Some inequalities related to the Euclidean operator <i>A</i>-seminorm of <i>d</i>-tuples of <i>A</i>-bounded operators are proved. In addition, under appropriate conditions, several reverse bounds for the <i>A</i>-numerical radius in single and multivariable settings are also stated.
first_indexed 2024-03-11T06:56:34Z
format Article
id doaj.art-810cc327483f48a4b0414d3a33f7fca3
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T06:56:34Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-810cc327483f48a4b0414d3a33f7fca32023-11-17T09:35:48ZengMDPI AGAxioms2075-16802023-03-0112331610.3390/axioms12030316Inequalities and Reverse Inequalities for the Joint <i>A</i>-Numerical Radius of OperatorsNajla Altwaijry0Silvestru Sever Dragomir1Kais Feki2Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaCollege of Engineering and Science, Victoria University, Melbourne, VIC 8000, AustraliaFaculty of Economic Sciences and Management of Mahdia, University of Monastir, Mahdia 5111, TunisiaIn this paper, we aim to establish several estimates concerning the generalized Euclidean operator radius of <i>d</i>-tuples of <i>A</i>-bounded linear operators acting on a complex Hilbert space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>, which leads to the special case of the well-known <i>A</i>-numerical radius for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Here, <i>A</i> is a positive operator on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>. Some inequalities related to the Euclidean operator <i>A</i>-seminorm of <i>d</i>-tuples of <i>A</i>-bounded operators are proved. In addition, under appropriate conditions, several reverse bounds for the <i>A</i>-numerical radius in single and multivariable settings are also stated.https://www.mdpi.com/2075-1680/12/3/316positive operatorjoint <i>A</i>-numerical radiusEuclidean operator <i>A</i>-seminormjoint operator <i>A</i>-seminorm
spellingShingle Najla Altwaijry
Silvestru Sever Dragomir
Kais Feki
Inequalities and Reverse Inequalities for the Joint <i>A</i>-Numerical Radius of Operators
Axioms
positive operator
joint <i>A</i>-numerical radius
Euclidean operator <i>A</i>-seminorm
joint operator <i>A</i>-seminorm
title Inequalities and Reverse Inequalities for the Joint <i>A</i>-Numerical Radius of Operators
title_full Inequalities and Reverse Inequalities for the Joint <i>A</i>-Numerical Radius of Operators
title_fullStr Inequalities and Reverse Inequalities for the Joint <i>A</i>-Numerical Radius of Operators
title_full_unstemmed Inequalities and Reverse Inequalities for the Joint <i>A</i>-Numerical Radius of Operators
title_short Inequalities and Reverse Inequalities for the Joint <i>A</i>-Numerical Radius of Operators
title_sort inequalities and reverse inequalities for the joint i a i numerical radius of operators
topic positive operator
joint <i>A</i>-numerical radius
Euclidean operator <i>A</i>-seminorm
joint operator <i>A</i>-seminorm
url https://www.mdpi.com/2075-1680/12/3/316
work_keys_str_mv AT najlaaltwaijry inequalitiesandreverseinequalitiesforthejointiainumericalradiusofoperators
AT silvestruseverdragomir inequalitiesandreverseinequalitiesforthejointiainumericalradiusofoperators
AT kaisfeki inequalitiesandreverseinequalitiesforthejointiainumericalradiusofoperators