Diode Laser Welding/Brazing of Aluminum Alloy to Steel Using a Nickel Coating

Joining Al alloy to steel is of great interest for application in the automotive industry. Although a vast number of studies have been conducted to join Al to steel, the joining of Al to steel is still challenging due to the formation of brittle Fe–Al intermetallic compounds. In this work,...

Full description

Bibliographic Details
Main Authors: Jin Yang, Jieshi Chen, Wanqin Zhao, Peilei Zhang, Zhishui Yu, Yulong Li, Zhi Zeng, Norman Zhou
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/8/6/922
Description
Summary:Joining Al alloy to steel is of great interest for application in the automotive industry. Although a vast number of studies have been conducted to join Al to steel, the joining of Al to steel is still challenging due to the formation of brittle Fe–Al intermetallic compounds. In this work, the microstructure and mechanical properties of the dissimilar Al/steel joints with and without a nickel coating are comparatively investigated. A homogenous reaction layer composed of FeZn10 and Fe2Al5 is formed at the interface in the joints without Ni coating, and the joint facture load is only 743 N. To prevent the formation of brittle Fe2Al5, Ni electroplated coating is applied onto a steel surface. It has been shown that a nonhomogeneous reaction layer is observed at the interfacial region: Ni5Zn21 is formed at the direct irradiation zone, while Al3Ni is formed at the fusion zone root. The microhardness of the interfacial layer is reduced, which leads to the improvement of the joint mechanical properties. The average fracture load of the Al/Ni-coated steel joints reaches 930 N. In all of the cases, failure occurs at the Ni coating/fusion zone interface.
ISSN:2076-3417