The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics

<p>We present a new method for the determination of the source-specific black carbon emission rates. The methodology was applied in two different environments: an urban location in Ljubljana and a rural one in the Vipava valley (Slovenia, Europe), which differ in pollution sources and topograp...

Full description

Bibliographic Details
Main Authors: A. Gregorič, L. Drinovec, I. Ježek, J. Vaupotič, M. Lenarčič, D. Grauf, L. Wang, M. Mole, S. Stanič, G. Močnik
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/20/14139/2020/acp-20-14139-2020.pdf
_version_ 1819092743315521536
author A. Gregorič
A. Gregorič
L. Drinovec
L. Drinovec
L. Drinovec
I. Ježek
J. Vaupotič
M. Lenarčič
D. Grauf
L. Wang
L. Wang
M. Mole
M. Mole
S. Stanič
G. Močnik
G. Močnik
G. Močnik
author_facet A. Gregorič
A. Gregorič
L. Drinovec
L. Drinovec
L. Drinovec
I. Ježek
J. Vaupotič
M. Lenarčič
D. Grauf
L. Wang
L. Wang
M. Mole
M. Mole
S. Stanič
G. Močnik
G. Močnik
G. Močnik
author_sort A. Gregorič
collection DOAJ
description <p>We present a new method for the determination of the source-specific black carbon emission rates. The methodology was applied in two different environments: an urban location in Ljubljana and a rural one in the Vipava valley (Slovenia, Europe), which differ in pollution sources and topography. The atmospheric dynamics was quantified using the atmospheric radon (<span class="inline-formula"><sup>222</sup></span>Rn) concentration to determine the mixing layer height for periods of thermally driven planetary boundary layer evolution. The black carbon emission rate was determined using an improved box model taking into account boundary layer depth and a horizontal advection term, describing the temporal and spatial exponential decay of black carbon concentration. The rural Vipava valley is impacted by a significantly higher contribution to black carbon concentration from biomass burning during winter (60&thinsp;%) in comparison to Ljubljana (27&thinsp;%). Daily averaged black carbon emission rates in Ljubljana were 210&thinsp;<span class="inline-formula">±</span>&thinsp;110 and 260&thinsp;<span class="inline-formula">±</span>&thinsp;110&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">h</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c8a1e8ec91a0bb9cfa9312c70ff1edd8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-14139-2020-ie00001.svg" width="53pt" height="15pt" src="acp-20-14139-2020-ie00001.png"/></svg:svg></span></span> in spring and winter, respectively. Overall black carbon emission rates in Vipava valley were only slightly lower compared to Ljubljana: 150&thinsp;<span class="inline-formula">±</span>&thinsp;60 and 250&thinsp;<span class="inline-formula">±</span>&thinsp;160&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">h</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e1d4f13000bf19fdc3f10d7d43478e0e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-14139-2020-ie00002.svg" width="53pt" height="15pt" src="acp-20-14139-2020-ie00002.png"/></svg:svg></span></span> in spring and winter, respectively. Different daily dynamics of biomass burning and traffic emissions was responsible for slightly higher contribution of biomass burning to measured black carbon concentration, compared to the fraction of its emission rate. Coupling the high-time-resolution measurements of black carbon concentration with atmospheric radon concentration measurements can provide a useful tool for direct, highly time-resolved measurements of the intensity of emission sources. Source-specific emission rates can be used to assess the efficiency of pollution mitigation measures over longer time periods, thereby avoiding the influence of variable meteorology.</p>
first_indexed 2024-12-21T23:00:28Z
format Article
id doaj.art-8110e9273b0f49e3854ec81d75ef3468
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-21T23:00:28Z
publishDate 2020-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-8110e9273b0f49e3854ec81d75ef34682022-12-21T18:47:18ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-11-0120141391416210.5194/acp-20-14139-2020The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamicsA. Gregorič0A. Gregorič1L. Drinovec2L. Drinovec3L. Drinovec4I. Ježek5J. Vaupotič6M. Lenarčič7D. Grauf8L. Wang9L. Wang10M. Mole11M. Mole12S. Stanič13G. Močnik14G. Močnik15G. Močnik16Aerosol d.o.o., Ljubljana, 1000, SloveniaCentre for Atmospheric Research, University of Nova Gorica, Nova Gorica, 5000, SloveniaAerosol d.o.o., Ljubljana, 1000, SloveniaCentre for Atmospheric Research, University of Nova Gorica, Nova Gorica, 5000, SloveniaDepartment of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, SloveniaAerosol d.o.o., Ljubljana, 1000, SloveniaDepartment of Environmental Sciences, Jožef Stefan Institute, Ljubljana, 1000, SloveniaAerovizija d.o.o., Ljubljana, 1000, SloveniaAerovizija d.o.o., Ljubljana, 1000, SloveniaCentre for Atmospheric Research, University of Nova Gorica, Nova Gorica, 5000, SloveniaSchool of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi’an, 710048, ChinaCentre for Atmospheric Research, University of Nova Gorica, Nova Gorica, 5000, SloveniaQuasar Science Resources S.L., Madrid, 28232, SpainCentre for Atmospheric Research, University of Nova Gorica, Nova Gorica, 5000, SloveniaAerosol d.o.o., Ljubljana, 1000, SloveniaCentre for Atmospheric Research, University of Nova Gorica, Nova Gorica, 5000, SloveniaDepartment of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia<p>We present a new method for the determination of the source-specific black carbon emission rates. The methodology was applied in two different environments: an urban location in Ljubljana and a rural one in the Vipava valley (Slovenia, Europe), which differ in pollution sources and topography. The atmospheric dynamics was quantified using the atmospheric radon (<span class="inline-formula"><sup>222</sup></span>Rn) concentration to determine the mixing layer height for periods of thermally driven planetary boundary layer evolution. The black carbon emission rate was determined using an improved box model taking into account boundary layer depth and a horizontal advection term, describing the temporal and spatial exponential decay of black carbon concentration. The rural Vipava valley is impacted by a significantly higher contribution to black carbon concentration from biomass burning during winter (60&thinsp;%) in comparison to Ljubljana (27&thinsp;%). Daily averaged black carbon emission rates in Ljubljana were 210&thinsp;<span class="inline-formula">±</span>&thinsp;110 and 260&thinsp;<span class="inline-formula">±</span>&thinsp;110&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">h</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c8a1e8ec91a0bb9cfa9312c70ff1edd8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-14139-2020-ie00001.svg" width="53pt" height="15pt" src="acp-20-14139-2020-ie00001.png"/></svg:svg></span></span> in spring and winter, respectively. Overall black carbon emission rates in Vipava valley were only slightly lower compared to Ljubljana: 150&thinsp;<span class="inline-formula">±</span>&thinsp;60 and 250&thinsp;<span class="inline-formula">±</span>&thinsp;160&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">h</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e1d4f13000bf19fdc3f10d7d43478e0e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-14139-2020-ie00002.svg" width="53pt" height="15pt" src="acp-20-14139-2020-ie00002.png"/></svg:svg></span></span> in spring and winter, respectively. Different daily dynamics of biomass burning and traffic emissions was responsible for slightly higher contribution of biomass burning to measured black carbon concentration, compared to the fraction of its emission rate. Coupling the high-time-resolution measurements of black carbon concentration with atmospheric radon concentration measurements can provide a useful tool for direct, highly time-resolved measurements of the intensity of emission sources. Source-specific emission rates can be used to assess the efficiency of pollution mitigation measures over longer time periods, thereby avoiding the influence of variable meteorology.</p>https://acp.copernicus.org/articles/20/14139/2020/acp-20-14139-2020.pdf
spellingShingle A. Gregorič
A. Gregorič
L. Drinovec
L. Drinovec
L. Drinovec
I. Ježek
J. Vaupotič
M. Lenarčič
D. Grauf
L. Wang
L. Wang
M. Mole
M. Mole
S. Stanič
G. Močnik
G. Močnik
G. Močnik
The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics
Atmospheric Chemistry and Physics
title The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics
title_full The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics
title_fullStr The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics
title_full_unstemmed The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics
title_short The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics
title_sort determination of highly time resolved and source separated black carbon emission rates using radon as a tracer of atmospheric dynamics
url https://acp.copernicus.org/articles/20/14139/2020/acp-20-14139-2020.pdf
work_keys_str_mv AT agregoric thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT agregoric thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT ldrinovec thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT ldrinovec thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT ldrinovec thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT ijezek thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT jvaupotic thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT mlenarcic thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT dgrauf thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT lwang thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT lwang thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT mmole thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT mmole thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT sstanic thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT gmocnik thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT gmocnik thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT gmocnik thedeterminationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT agregoric determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT agregoric determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT ldrinovec determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT ldrinovec determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT ldrinovec determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT ijezek determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT jvaupotic determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT mlenarcic determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT dgrauf determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT lwang determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT lwang determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT mmole determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT mmole determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT sstanic determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT gmocnik determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT gmocnik determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics
AT gmocnik determinationofhighlytimeresolvedandsourceseparatedblackcarbonemissionratesusingradonasatracerofatmosphericdynamics