Summary: | The activation response of a material is a primary factor considered when evaluating its suitability for a nuclear application. Various radiological quantities, such as total (becquerel) activity, decay heat, and γ dose, can be readily predicted via inventory simulations, which numerically evolve in time the composition of a material under exposure to neutron irradiation. However, the resulting data sets can be very complex, often necessarily resulting in an over-simplification of the results – most commonly by just considering total response metrics. A number of different techniques for disseminating more completely the vast amount of data output from, in particular, the FISPACT-II inventory code system, including importance diagrams, nuclide maps, and primary knock-on atom (PKA) spectra, have been developed and used in scoping studies to produce database reports for the periodic table of elements. This paper introduces the latest addition to this arsenal – standardised and automated plotting of the time evolution in a radiological quantity for a given material separated by contributions from dominant radionuclides. Examples for relevant materials under predicted fusion reactor conditions, and for bench-marking studies against decay-heat measurements, demonstrate the usefulness and power of these radionuclide-separated activation plots.
|