The transmutation of Escherichia coli ATCC 25922 to small colony variants (SCVs) E. coli strain as a result of exposure to gentamicin

Background: Small colony variants (SCVs) are biotypes of bacteria that have a size of approximately one-tenth or less of the wild types and has distinct characteristics comparing to the wild type strains. Clinical SCVs are usually associated with persistent infection and require a long-term treatmen...

Full description

Bibliographic Details
Main Authors: Khaled A. Noaman, Naiyf S. Alharbi, Jamal M. Khaled, Shine Kadaikunnan, Ahmed S. Alobaidi, Abeer O. Almazyed, Mohammed S. Aldosary, Saeed Al Rashedi
Format: Article
Language:English
Published: Elsevier 2023-11-01
Series:Journal of Infection and Public Health
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1876034123002915
Description
Summary:Background: Small colony variants (SCVs) are biotypes of bacteria that have a size of approximately one-tenth or less of the wild types and has distinct characteristics comparing to the wild type strains. Clinical SCVs are usually associated with persistent infection and require a long-term treatment program with antibiotics. In Saudi Arabia, there are few studies about SCVs Escherichia coli for this reason, this study is aimed to investigate the ability of gentamicin to mutate E. coli ATCC 25922 to produce small SCVs and investigate the genotypes and phenotypes changes and stress tolerance comparing to clinical SCVs E. coli and normal clinical E. coli Isolated from blood samples. Methods: In this investigation, four clinical blood samples were collected ted from patients and the cultivation and isolation were carried out in KFMC between December 2019 and February 2021. The identification of positive blood culture samples was done using phoenix MD. Non-SCV E. coli ATCC25922 were mutated to SCV using exposure to increasing gradual concentrations of gentamicin at 100-generation intervals. Biochemical features and susceptibility to standard antibiotics using automated Phoenix MD 50 and. The survival assays were done using several stresses including heat shock, low pH, high osmotic pressure, and oxidative pressure. Virulence genes screening included the detection of genes that encoded to α-haemolysin, CS12 fimbriae, F17-like fimbrial adhesion, P-related fimbriae, yersiniabactin siderophore system, P-fimbriae, aerobactin, iron-regulated genes using PCR and gel electrophoresis. Results: The data from the mutating E. coli ATCC 25922 small colony test with gentamicin revealed that the first emergence of the multidrug resistance (MDR) SCV E. coli strain occurred at generation number 250, corresponding to a gentamicin concentration of 57 g/ml. Pathogenicity islands detection revealed that all tested E. coli strains have PAI IV 536 genes on their chromosomes furthermore, mutated SCV E. coli ATCC 25922 acquired PAII CFT073 and PAI IV 536. Survival tests showed no significant differences changes in tolerance of mutated SCVs comparing to parental strain. Conclusion: The present work concluded that gentamicin sub-MIC concentration gradual exposure can induce mutation responsible for SCV formation and evolving of MDR E. coli strains. The mutated SCVs evolved high-level aminoglycoside resistance for gentamicin and resistance to amikacin, it also developed resistance to 2 cephalosporin antibiotics cefuroxime, and cephalothin and a resistance to aztreonam.
ISSN:1876-0341