Summary: | Dark matter (DM) can be composed of a collection of axions, or axion-like particles (ALPs), whose existence is due to the spontaneous breaking of the Peccei–Quinn <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> symmetry, which is the most compelling solution of the strong <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>P</mi></mrow></semantics></math></inline-formula>-problem of quantum chromodynamics (QCD). Axions must be spin-0 particles with very small masses and extremely weak interactions with themselves as well as with the particles that constitute the Standard Model. In general, the physics of axions is detailed by a quantum field theory of a real scalar field, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>. Nevertheless, it is more convenient to implement a nonrelativistic effective field theory with a complex scalar field, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>, to characterize the mentioned axions in the low-energy regime. A possible application of this equivalent description is for studying the collapse of cold dark matter into more complex structures. There have been a few derivations of effective Lagrangians for the complex field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>, which were all equivalent after a nonlocal space transformation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula> was found, and some other corrections were introduced. Our contribution herein is to further provide higher-order corrections; in particular, we compute the effective field theory Lagrangian up to order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo>(</mo><msup><mi>ψ</mi><mo>*</mo></msup><mi>ψ</mi><mo>)</mo></mrow><mn>5</mn></msup></semantics></math></inline-formula>, also incorporating the fast-oscillating field fluctuations into the dominant slowly varying nonrelativistic field.
|