Computational Solution of the Time-Fractional Schrödinger Equation by Using Trigonometric B-Spline Collocation Method

This paper proposes a numerical method to obtain an approximation solution for the time-fractional Schrödinger Equation (TFSE) based on a combination of the cubic trigonometric B-spline collocation method and the Crank-Nicolson scheme. The fractional derivative operator is described in the Caputo se...

Full description

Bibliographic Details
Main Authors: Adel R. Hadhoud, Abdulqawi A. M. Rageh, Taha Radwan
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/3/127
_version_ 1797471511440785408
author Adel R. Hadhoud
Abdulqawi A. M. Rageh
Taha Radwan
author_facet Adel R. Hadhoud
Abdulqawi A. M. Rageh
Taha Radwan
author_sort Adel R. Hadhoud
collection DOAJ
description This paper proposes a numerical method to obtain an approximation solution for the time-fractional Schrödinger Equation (TFSE) based on a combination of the cubic trigonometric B-spline collocation method and the Crank-Nicolson scheme. The fractional derivative operator is described in the Caputo sense. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mn>1</mn></msub><mo>−</mo></mrow></semantics></math></inline-formula>approximation method is used for time-fractional derivative discretization. Using Von Neumann stability analysis, the proposed technique is shown to be conditionally stable. Numerical examples are solved to verify the accuracy and effectiveness of this method. The error norms <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula> are also calculated at different values of <i>N</i> and <i>t</i> to evaluate the performance of the suggested method.
first_indexed 2024-03-09T19:49:19Z
format Article
id doaj.art-812aef2313cd4cbd9069964de16428fb
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T19:49:19Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-812aef2313cd4cbd9069964de16428fb2023-11-24T01:14:05ZengMDPI AGFractal and Fractional2504-31102022-02-016312710.3390/fractalfract6030127Computational Solution of the Time-Fractional Schrödinger Equation by Using Trigonometric B-Spline Collocation MethodAdel R. Hadhoud0Abdulqawi A. M. Rageh1Taha Radwan2Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebeen El-Kom 13829, EgyptDepartment of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebeen El-Kom 13829, EgyptDepartment of Mathematics, College of Science and Arts, Qassim University, Ar Rass 51452, Saudi ArabiaThis paper proposes a numerical method to obtain an approximation solution for the time-fractional Schrödinger Equation (TFSE) based on a combination of the cubic trigonometric B-spline collocation method and the Crank-Nicolson scheme. The fractional derivative operator is described in the Caputo sense. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mn>1</mn></msub><mo>−</mo></mrow></semantics></math></inline-formula>approximation method is used for time-fractional derivative discretization. Using Von Neumann stability analysis, the proposed technique is shown to be conditionally stable. Numerical examples are solved to verify the accuracy and effectiveness of this method. The error norms <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula> are also calculated at different values of <i>N</i> and <i>t</i> to evaluate the performance of the suggested method.https://www.mdpi.com/2504-3110/6/3/127fractional Schrödinger equationstrigonometric B-splines methodCaputo derivativevon neumann methodstability analysis
spellingShingle Adel R. Hadhoud
Abdulqawi A. M. Rageh
Taha Radwan
Computational Solution of the Time-Fractional Schrödinger Equation by Using Trigonometric B-Spline Collocation Method
Fractal and Fractional
fractional Schrödinger equations
trigonometric B-splines method
Caputo derivative
von neumann method
stability analysis
title Computational Solution of the Time-Fractional Schrödinger Equation by Using Trigonometric B-Spline Collocation Method
title_full Computational Solution of the Time-Fractional Schrödinger Equation by Using Trigonometric B-Spline Collocation Method
title_fullStr Computational Solution of the Time-Fractional Schrödinger Equation by Using Trigonometric B-Spline Collocation Method
title_full_unstemmed Computational Solution of the Time-Fractional Schrödinger Equation by Using Trigonometric B-Spline Collocation Method
title_short Computational Solution of the Time-Fractional Schrödinger Equation by Using Trigonometric B-Spline Collocation Method
title_sort computational solution of the time fractional schrodinger equation by using trigonometric b spline collocation method
topic fractional Schrödinger equations
trigonometric B-splines method
Caputo derivative
von neumann method
stability analysis
url https://www.mdpi.com/2504-3110/6/3/127
work_keys_str_mv AT adelrhadhoud computationalsolutionofthetimefractionalschrodingerequationbyusingtrigonometricbsplinecollocationmethod
AT abdulqawiamrageh computationalsolutionofthetimefractionalschrodingerequationbyusingtrigonometricbsplinecollocationmethod
AT taharadwan computationalsolutionofthetimefractionalschrodingerequationbyusingtrigonometricbsplinecollocationmethod