Adsorption behavior of organic pollutants on microplastics

Microplastics (MPs) are emerging pollutants that act as a carrier of toxic pollutants, release toxic substances, and aggregate in biota. The adsorption behavior of MPs has recently become a research hot spot. The objective of this study was to summarize the main mechanisms by which MPs adsorb organi...

Full description

Bibliographic Details
Main Authors: Lina Fu, Jing Li, Guoyu Wang, Yaning Luan, Wei Dai
Format: Article
Language:English
Published: Elsevier 2021-07-01
Series:Ecotoxicology and Environmental Safety
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0147651321003183
Description
Summary:Microplastics (MPs) are emerging pollutants that act as a carrier of toxic pollutants, release toxic substances, and aggregate in biota. The adsorption behavior of MPs has recently become a research hot spot. The objective of this study was to summarize the main mechanisms by which MPs adsorb organic pollutants, introduce some mathematical models commonly used to study the adsorption behavior of MPs, and discuss the factors affecting the adsorption capacity from three perspectives, i.e., the properties of MPs and organic pollutants, and environmental factors. Adsorption kinetics and isothermal adsorption models are commonly used to study the adsorption of organic pollutants on MPs. We observed that hydrophobic interaction is the most common mechanism by which MPs adsorb organic pollutants, and also reportedly controls the portion of organic pollutants. Additionally, electrostatic interaction and other non-covalent forces, such as hydrogen bonds, halogen bonds, and π–π interactions, are also mechanisms of organic pollutant adsorption on MPs. The particle size, specific surface area, aging degree, crystallinity, and polarity of MPs, and organic pollutant properties (hydrophobicity and dissociated forms) are key factors affecting adsorption capacity. Changes in the pH, temperature, and ionic strength also affect the adsorption capacity. Current research on the adsorption behavior of MPs has mainly been conducted in laboratories, and in-depth studies on the adsorption mechanism and influencing factors are limited. Therefore, studies on the adsorption behavior of MPs in the environment are required, and this study will contribute to a better understanding of this topic.
ISSN:0147-6513