Confined assembly of ultrathin nanoporous nitrogen-doped graphene nanofilms with dual metal coordination chemistry

Summary: Graphene oxide (GO) nanosheets with unique structure have received much attention in providing opportunity for high-performance membranes in separation. However, the rational design of ultrathin graphene membranes with controlled structures remains a big challenge. Here, we report a methodo...

Full description

Bibliographic Details
Main Authors: Zehai Xu, Yufan Zhang, Xu Zhang, Qin Meng, Yujie Zhu, Chong Shen, Yinghua Lu, Guoliang Zhang, Congjie Gao
Format: Article
Language:English
Published: Elsevier 2021-06-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004221005447
Description
Summary:Summary: Graphene oxide (GO) nanosheets with unique structure have received much attention in providing opportunity for high-performance membranes in separation. However, the rational design of ultrathin graphene membranes with controlled structures remains a big challenge. Here, we report a methodology to synthesize dual metal-coordinated ultrathin nanoporous graphene nanofilms by tailoring well-aligned nanocrystals as building blocks on heteroatom-doped GO nanosheets with tunable architectures. Manipulation of metal nitrate as bifunctional dopants realizes N-doping of graphene oxide and preferential growth of α-Mn2O3 nanocrystals. Generation of Mn-O-C bond during cross-linking greatly strengthens the stability of membranes for long-term steady operation. Meanwhile, because of spatial confinement effects and high binding energy, N-doped reduced GO nanosheets are desirable supports to construct numerous Mn-N-C bonds, thus generating artificial nanopores to significantly increase nanochannels for ultrafast mass transport. Moreover, the size-selective permeability of ultrathin nanoporous GO-based nanofilms can be optimized by managing the types of metal source for target coordination.
ISSN:2589-0042