Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators

In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SA...

Full description

Bibliographic Details
Main Authors: Wen Chen, Linwei Zhang, Shangshu Yang, Wenhan Jia, Songsong Zhang, Yuandong Gu, Liang Lou, Guoqiang Wu
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/12/9/1118
_version_ 1797518158234386432
author Wen Chen
Linwei Zhang
Shangshu Yang
Wenhan Jia
Songsong Zhang
Yuandong Gu
Liang Lou
Guoqiang Wu
author_facet Wen Chen
Linwei Zhang
Shangshu Yang
Wenhan Jia
Songsong Zhang
Yuandong Gu
Liang Lou
Guoqiang Wu
author_sort Wen Chen
collection DOAJ
description In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>C</mi><mi>F</mi></mrow></semantics></math></inline-formula>), effective coupling coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>k</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow><mn>2</mn></msubsup></semantics></math></inline-formula>) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>k</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow><mn>2</mn></msubsup></semantics></math></inline-formula> of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>C</mi><mi>F</mi></mrow></semantics></math></inline-formula> of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip.
first_indexed 2024-03-10T07:26:13Z
format Article
id doaj.art-81611945cb63499f867ec2deb5480872
institution Directory Open Access Journal
issn 2072-666X
language English
last_indexed 2024-03-10T07:26:13Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj.art-81611945cb63499f867ec2deb54808722023-11-22T14:16:52ZengMDPI AGMicromachines2072-666X2021-09-01129111810.3390/mi12091118Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave ResonatorsWen Chen0Linwei Zhang1Shangshu Yang2Wenhan Jia3Songsong Zhang4Yuandong Gu5Liang Lou6Guoqiang Wu7Institute of Technological Sciences, Wuhan University, Wuhan 430072, ChinaShanghai Industrial Technology Research Institute, Shanghai 201899, ChinaInstitute of Technological Sciences, Wuhan University, Wuhan 430072, ChinaInstitute of Technological Sciences, Wuhan University, Wuhan 430072, ChinaShanghai Industrial Technology Research Institute, Shanghai 201899, ChinaShanghai Industrial Technology Research Institute, Shanghai 201899, ChinaShanghai Industrial Technology Research Institute, Shanghai 201899, ChinaInstitute of Technological Sciences, Wuhan University, Wuhan 430072, ChinaIn this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>C</mi><mi>F</mi></mrow></semantics></math></inline-formula>), effective coupling coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>k</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow><mn>2</mn></msubsup></semantics></math></inline-formula>) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>k</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow><mn>2</mn></msubsup></semantics></math></inline-formula> of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>C</mi><mi>F</mi></mrow></semantics></math></inline-formula> of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip.https://www.mdpi.com/2072-666X/12/9/1118quasi-surface acoustic wave (QSAW) resonatormicroelectromechnical systems (MEMS)finite element analysisaluminum nitride
spellingShingle Wen Chen
Linwei Zhang
Shangshu Yang
Wenhan Jia
Songsong Zhang
Yuandong Gu
Liang Lou
Guoqiang Wu
Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators
Micromachines
quasi-surface acoustic wave (QSAW) resonator
microelectromechnical systems (MEMS)
finite element analysis
aluminum nitride
title Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators
title_full Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators
title_fullStr Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators
title_full_unstemmed Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators
title_short Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators
title_sort three dimensional finite element analysis and characterization of quasi surface acoustic wave resonators
topic quasi-surface acoustic wave (QSAW) resonator
microelectromechnical systems (MEMS)
finite element analysis
aluminum nitride
url https://www.mdpi.com/2072-666X/12/9/1118
work_keys_str_mv AT wenchen threedimensionalfiniteelementanalysisandcharacterizationofquasisurfaceacousticwaveresonators
AT linweizhang threedimensionalfiniteelementanalysisandcharacterizationofquasisurfaceacousticwaveresonators
AT shangshuyang threedimensionalfiniteelementanalysisandcharacterizationofquasisurfaceacousticwaveresonators
AT wenhanjia threedimensionalfiniteelementanalysisandcharacterizationofquasisurfaceacousticwaveresonators
AT songsongzhang threedimensionalfiniteelementanalysisandcharacterizationofquasisurfaceacousticwaveresonators
AT yuandonggu threedimensionalfiniteelementanalysisandcharacterizationofquasisurfaceacousticwaveresonators
AT lianglou threedimensionalfiniteelementanalysisandcharacterizationofquasisurfaceacousticwaveresonators
AT guoqiangwu threedimensionalfiniteelementanalysisandcharacterizationofquasisurfaceacousticwaveresonators