Aerobic Selective Oxidation of Biomass-derived 5-Hydroxymethylfurfural to 2,5-Diformylfuran with Active Manganese Dioxide Catalyst
5-hydroxymethylfurfural (HMF) is an important bio-based platform chemical, and its aerobic selective oxidation to 2,5-diformylfuran (DFF) still remains a challenge. This work dealt with active manganese dioxide (AMD) and efficiently catalyzed HMF oxidation to DFF with a yield of ~73% at 393 K and 60...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
North Carolina State University
2014-06-01
|
Series: | BioResources |
Subjects: | |
Online Access: | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_3_4656_Zhang_Aerobic_Selective_Oxidation |
Summary: | 5-hydroxymethylfurfural (HMF) is an important bio-based platform chemical, and its aerobic selective oxidation to 2,5-diformylfuran (DFF) still remains a challenge. This work dealt with active manganese dioxide (AMD) and efficiently catalyzed HMF oxidation to DFF with a yield of ~73% at 393 K and 60 bar O2 in N,N-Dimethylformamide (DMF). Through analysis of liquid products and the catalyst characterization using X-ray diffraction (XRD), a scanning electron microscope (SEM), a transmission electron microscope (TEM), and an elemental analyzer, it can be seen that this AMD catalyst is a low-cost, efficient, and environmentally benign heterogeneous catalyst for the aerobic selective oxidation of HMF to DFF in a one-pot technique. These research results may provide guidance for the development of more efficient catalysts for the future industrial production of high-value added DFF. |
---|---|
ISSN: | 1930-2126 1930-2126 |