Summary: | Temperature is an essential factor affecting the operation of light-emitting diodes (LEDs), which are often used in circuits containing multiple devices influencing each other. Therefore, the thermal models of such circuits should take into account not only the self-heating effects, but also the mutual thermal influences among devices. This problem is illustrated here based on the example of a module containing six LEDs forming on the substrate a hexagon. This module is supposed to operate without any heat sink in the natural convection cooling conditions, hence it has been proposed to increase the thermal pad area in order to lower the device-operating temperature. In the experimental part of the paper, the recorded diode-heating curves are processed using the network identification by deconvolution method. This allows for the computation of the thermal time constant spectra and the generation of device-compact thermal models. Moreover, the influence of the thermal pad surface area on the device temperature and the thermal coupling between LEDs is investigated.
|