Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data

Identifying cell-type-specific spatial patterns in ST data is critical for understanding tissue organization but current methods rely on external references. Here the authors develop a reference-free method to effectively recover cell-type transcriptional profiles and proportions.

Bibliographic Details
Main Authors: Brendan F. Miller, Feiyang Huang, Lyla Atta, Arpan Sahoo, Jean Fan
Format: Article
Language:English
Published: Nature Portfolio 2022-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-022-30033-z
_version_ 1828370724593598464
author Brendan F. Miller
Feiyang Huang
Lyla Atta
Arpan Sahoo
Jean Fan
author_facet Brendan F. Miller
Feiyang Huang
Lyla Atta
Arpan Sahoo
Jean Fan
author_sort Brendan F. Miller
collection DOAJ
description Identifying cell-type-specific spatial patterns in ST data is critical for understanding tissue organization but current methods rely on external references. Here the authors develop a reference-free method to effectively recover cell-type transcriptional profiles and proportions.
first_indexed 2024-04-14T06:41:03Z
format Article
id doaj.art-8169b376adb24eae99a8f90a6c88b8d9
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-04-14T06:41:03Z
publishDate 2022-04-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-8169b376adb24eae99a8f90a6c88b8d92022-12-22T02:07:19ZengNature PortfolioNature Communications2041-17232022-04-0113111310.1038/s41467-022-30033-zReference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics dataBrendan F. Miller0Feiyang Huang1Lyla Atta2Arpan Sahoo3Jean Fan4Center for Computational Biology, Whiting School of Engineering, Johns Hopkins UniversityCenter for Computational Biology, Whiting School of Engineering, Johns Hopkins UniversityCenter for Computational Biology, Whiting School of Engineering, Johns Hopkins UniversityCenter for Computational Biology, Whiting School of Engineering, Johns Hopkins UniversityCenter for Computational Biology, Whiting School of Engineering, Johns Hopkins UniversityIdentifying cell-type-specific spatial patterns in ST data is critical for understanding tissue organization but current methods rely on external references. Here the authors develop a reference-free method to effectively recover cell-type transcriptional profiles and proportions.https://doi.org/10.1038/s41467-022-30033-z
spellingShingle Brendan F. Miller
Feiyang Huang
Lyla Atta
Arpan Sahoo
Jean Fan
Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
Nature Communications
title Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
title_full Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
title_fullStr Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
title_full_unstemmed Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
title_short Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
title_sort reference free cell type deconvolution of multi cellular pixel resolution spatially resolved transcriptomics data
url https://doi.org/10.1038/s41467-022-30033-z
work_keys_str_mv AT brendanfmiller referencefreecelltypedeconvolutionofmulticellularpixelresolutionspatiallyresolvedtranscriptomicsdata
AT feiyanghuang referencefreecelltypedeconvolutionofmulticellularpixelresolutionspatiallyresolvedtranscriptomicsdata
AT lylaatta referencefreecelltypedeconvolutionofmulticellularpixelresolutionspatiallyresolvedtranscriptomicsdata
AT arpansahoo referencefreecelltypedeconvolutionofmulticellularpixelresolutionspatiallyresolvedtranscriptomicsdata
AT jeanfan referencefreecelltypedeconvolutionofmulticellularpixelresolutionspatiallyresolvedtranscriptomicsdata