Genetic diversity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS)

Abstract Background Yams (Dioscorea spp.) are economically important food for millions of people in the humid and sub-humid tropics. Dioscorea dumetorum (Kunth) is the most nutritious among the eight-yam species, commonly grown and consumed in West and Central Africa. Despite these qualities, the st...

Full description

Bibliographic Details
Main Authors: Christian Siadjeu, Eike Mayland-Quellhorst, Dirk C. Albach
Format: Article
Language:English
Published: BMC 2018-12-01
Series:BMC Plant Biology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12870-018-1593-x
_version_ 1818955649816461312
author Christian Siadjeu
Eike Mayland-Quellhorst
Dirk C. Albach
author_facet Christian Siadjeu
Eike Mayland-Quellhorst
Dirk C. Albach
author_sort Christian Siadjeu
collection DOAJ
description Abstract Background Yams (Dioscorea spp.) are economically important food for millions of people in the humid and sub-humid tropics. Dioscorea dumetorum (Kunth) is the most nutritious among the eight-yam species, commonly grown and consumed in West and Central Africa. Despite these qualities, the storage ability of D. dumetorum is restricted by severe postharvest hardening of the tubers that can be addressed through concerted breeding efforts. The first step of any breeding program is bound to the study of genetic diversity. In this study, we used the Genotyping-By-Sequencing of Single Nucleotide Polymorphism (GBS-SNP) to investigate the genetic diversity and population structure of 44 accessions of D. dumetorum in Cameroon. Ploidy was inferred using flow cytometry and gbs2ploidy. Results We obtained on average 6371 loci having at least information for 75% accessions. Based on 6457 unlinked SNPs, our results demonstrate that D. dumetorum is structured into four populations. We clearly identified, a western/north-western, a western, and south-western populations, suggesting that altitude and farmers-consumers preference are the decisive factors for differential adaptation and separation of these populations. Bayesian and neighbor-joining clustering detected the highest genetic variability in D. dumetorum accessions from the south-western region. This variation is likely due to larger breeding efforts in the region as shown by gene flow between D. dumetorum accessions from the south-western region inferred by maximum likelihood. Ploidy analysis revealed diploid and triploid levels in D. dumetorum accessions with mostly diploid accessions (77%). Male and female accessions were mostly triploid (75%) and diploid (69%), respectively. The 1C genome size values of D. dumetorum accessions were on average 0.333 ± 0.009 pg and 0.519 ± 0.004 pg for diploids and triploids, respectively. Conclusions Germplasm characterization, population structure and ploidy are an essential basic information in a breeding program as well as for conservation of intraspecific diversity. Thus, results obtained in this study provide valuable information for the improvement and conservation of D. dumetorum. Moreover, GBS appears as an efficient powerful tool to detect intraspecific variation.
first_indexed 2024-12-20T10:41:25Z
format Article
id doaj.art-816fc45e6059430da0a445ec77593ee7
institution Directory Open Access Journal
issn 1471-2229
language English
last_indexed 2024-12-20T10:41:25Z
publishDate 2018-12-01
publisher BMC
record_format Article
series BMC Plant Biology
spelling doaj.art-816fc45e6059430da0a445ec77593ee72022-12-21T19:43:32ZengBMCBMC Plant Biology1471-22292018-12-0118111410.1186/s12870-018-1593-xGenetic diversity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS)Christian Siadjeu0Eike Mayland-Quellhorst1Dirk C. Albach2Institute for Biology and Environmental Sciences, Biodiversity and Evolution of Plants, Carl-von-Ossietzky University OldenburgInstitute for Biology and Environmental Sciences, Biodiversity and Evolution of Plants, Carl-von-Ossietzky University OldenburgInstitute for Biology and Environmental Sciences, Biodiversity and Evolution of Plants, Carl-von-Ossietzky University OldenburgAbstract Background Yams (Dioscorea spp.) are economically important food for millions of people in the humid and sub-humid tropics. Dioscorea dumetorum (Kunth) is the most nutritious among the eight-yam species, commonly grown and consumed in West and Central Africa. Despite these qualities, the storage ability of D. dumetorum is restricted by severe postharvest hardening of the tubers that can be addressed through concerted breeding efforts. The first step of any breeding program is bound to the study of genetic diversity. In this study, we used the Genotyping-By-Sequencing of Single Nucleotide Polymorphism (GBS-SNP) to investigate the genetic diversity and population structure of 44 accessions of D. dumetorum in Cameroon. Ploidy was inferred using flow cytometry and gbs2ploidy. Results We obtained on average 6371 loci having at least information for 75% accessions. Based on 6457 unlinked SNPs, our results demonstrate that D. dumetorum is structured into four populations. We clearly identified, a western/north-western, a western, and south-western populations, suggesting that altitude and farmers-consumers preference are the decisive factors for differential adaptation and separation of these populations. Bayesian and neighbor-joining clustering detected the highest genetic variability in D. dumetorum accessions from the south-western region. This variation is likely due to larger breeding efforts in the region as shown by gene flow between D. dumetorum accessions from the south-western region inferred by maximum likelihood. Ploidy analysis revealed diploid and triploid levels in D. dumetorum accessions with mostly diploid accessions (77%). Male and female accessions were mostly triploid (75%) and diploid (69%), respectively. The 1C genome size values of D. dumetorum accessions were on average 0.333 ± 0.009 pg and 0.519 ± 0.004 pg for diploids and triploids, respectively. Conclusions Germplasm characterization, population structure and ploidy are an essential basic information in a breeding program as well as for conservation of intraspecific diversity. Thus, results obtained in this study provide valuable information for the improvement and conservation of D. dumetorum. Moreover, GBS appears as an efficient powerful tool to detect intraspecific variation.http://link.springer.com/article/10.1186/s12870-018-1593-xCameroonD. dumetorumYamGenetic diversityPopulation structureGBS
spellingShingle Christian Siadjeu
Eike Mayland-Quellhorst
Dirk C. Albach
Genetic diversity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS)
BMC Plant Biology
Cameroon
D. dumetorum
Yam
Genetic diversity
Population structure
GBS
title Genetic diversity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS)
title_full Genetic diversity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS)
title_fullStr Genetic diversity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS)
title_full_unstemmed Genetic diversity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS)
title_short Genetic diversity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS)
title_sort genetic diversity and population structure of trifoliate yam dioscorea dumetorum kunth in cameroon revealed by genotyping by sequencing gbs
topic Cameroon
D. dumetorum
Yam
Genetic diversity
Population structure
GBS
url http://link.springer.com/article/10.1186/s12870-018-1593-x
work_keys_str_mv AT christiansiadjeu geneticdiversityandpopulationstructureoftrifoliateyamdioscoreadumetorumkunthincameroonrevealedbygenotypingbysequencinggbs
AT eikemaylandquellhorst geneticdiversityandpopulationstructureoftrifoliateyamdioscoreadumetorumkunthincameroonrevealedbygenotypingbysequencinggbs
AT dirkcalbach geneticdiversityandpopulationstructureoftrifoliateyamdioscoreadumetorumkunthincameroonrevealedbygenotypingbysequencinggbs