Influence of Carbon Fibre Reinforced Polymer and Recycled Carbon Fibres on the compressive behaviour of self-compacting high-performance fibre-reinforced concrete
In recent years, carbon fibres have been extensively used to strengthen concrete structures. In most cases, the lamination process is carried out using epoxy resin as matrix. In some cases, especially when strengthen structural elements made of weak concrete, it is possible to replace the epoxy resi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Polish Academy of Sciences
2023-06-01
|
Series: | Archives of Civil Engineering |
Subjects: | |
Online Access: | https://journals.pan.pl/Content/127737/PDF/art04_int.pdf |
_version_ | 1797791526507511808 |
---|---|
author | Krzysztof Ostrowski Kazimierz Furtak |
author_facet | Krzysztof Ostrowski Kazimierz Furtak |
author_sort | Krzysztof Ostrowski |
collection | DOAJ |
description | In recent years, carbon fibres have been extensively used to strengthen concrete structures. In most cases, the lamination process is carried out using epoxy resin as matrix. In some cases, especially when strengthen structural elements made of weak concrete, it is possible to replace the epoxy resin with an inorganic, cement matrix, while at the same time maintaining a sufficient efficiency of strengthen understood as the percentage increase in the compressive strength of concrete samples due to the applied reinforcement in relation to the reference concrete. In these studies, elements of carbon fibres mats that are reinforced with a cement matrix were used as the starting product for fibre recovery. The laminate, which was used to reinforce concrete elements, was detached from the concrete surface and subjected to processing in order to obtain clean carbon fibre scraps without cement matrix. Then, the obtained carbon material, in shaped form, was used to strengthen self-compacting, high performance, fibre reinforced concrete (SCHPFRC). For comparative purposes, this concrete was also strengthened by carbon fibre mats (with one and three layers of CFRP). Each samples were tested in uniaxial compression test. The compressive strength of concrete reinforced with 1 and 3 layers of CFRP was higher by 37.9 and 96.3%, respectively, compared to the reference concrete. On the other hand, the compressive strength of concrete reinforced with 1 and 3 layers of carbon fibre scrapswas higher by 11.8 and 40.1%, respectively. Regardless of the reinforcement technique used, the composite elements showed a higher deformability limit in comparison plain concrete. The obtained results showed that it is possible to reuse carbon fibre to strengthen structural elements made of SCHPFRC effectively, using simple processing methods. |
first_indexed | 2024-03-13T02:20:06Z |
format | Article |
id | doaj.art-81759ed171c44982966912720d1cc86d |
institution | Directory Open Access Journal |
issn | 1230-2945 2300-3103 |
language | English |
last_indexed | 2024-03-13T02:20:06Z |
publishDate | 2023-06-01 |
publisher | Polish Academy of Sciences |
record_format | Article |
series | Archives of Civil Engineering |
spelling | doaj.art-81759ed171c44982966912720d1cc86d2023-06-30T10:08:30ZengPolish Academy of SciencesArchives of Civil Engineering1230-29452300-31032023-06-01vol. 69No 25364https://doi.org/10.24425/ace.2023.145252Influence of Carbon Fibre Reinforced Polymer and Recycled Carbon Fibres on the compressive behaviour of self-compacting high-performance fibre-reinforced concreteKrzysztof Ostrowski0https://orcid.org/0000-0001-5047-5862Kazimierz Furtak1https://orcid.org/0000-0002-7083-7530Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Cracow, PolandCracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Cracow, PolandIn recent years, carbon fibres have been extensively used to strengthen concrete structures. In most cases, the lamination process is carried out using epoxy resin as matrix. In some cases, especially when strengthen structural elements made of weak concrete, it is possible to replace the epoxy resin with an inorganic, cement matrix, while at the same time maintaining a sufficient efficiency of strengthen understood as the percentage increase in the compressive strength of concrete samples due to the applied reinforcement in relation to the reference concrete. In these studies, elements of carbon fibres mats that are reinforced with a cement matrix were used as the starting product for fibre recovery. The laminate, which was used to reinforce concrete elements, was detached from the concrete surface and subjected to processing in order to obtain clean carbon fibre scraps without cement matrix. Then, the obtained carbon material, in shaped form, was used to strengthen self-compacting, high performance, fibre reinforced concrete (SCHPFRC). For comparative purposes, this concrete was also strengthened by carbon fibre mats (with one and three layers of CFRP). Each samples were tested in uniaxial compression test. The compressive strength of concrete reinforced with 1 and 3 layers of CFRP was higher by 37.9 and 96.3%, respectively, compared to the reference concrete. On the other hand, the compressive strength of concrete reinforced with 1 and 3 layers of carbon fibre scrapswas higher by 11.8 and 40.1%, respectively. Regardless of the reinforcement technique used, the composite elements showed a higher deformability limit in comparison plain concrete. The obtained results showed that it is possible to reuse carbon fibre to strengthen structural elements made of SCHPFRC effectively, using simple processing methods.https://journals.pan.pl/Content/127737/PDF/art04_int.pdfexternal reinforcementfibre-reinforced concretehigh-performance concreterecycled carbonfibresself-compacting concretewaste processing |
spellingShingle | Krzysztof Ostrowski Kazimierz Furtak Influence of Carbon Fibre Reinforced Polymer and Recycled Carbon Fibres on the compressive behaviour of self-compacting high-performance fibre-reinforced concrete Archives of Civil Engineering external reinforcement fibre-reinforced concrete high-performance concrete recycled carbonfibres self-compacting concrete waste processing |
title | Influence of Carbon Fibre Reinforced Polymer and Recycled Carbon Fibres on the compressive behaviour of self-compacting high-performance fibre-reinforced concrete |
title_full | Influence of Carbon Fibre Reinforced Polymer and Recycled Carbon Fibres on the compressive behaviour of self-compacting high-performance fibre-reinforced concrete |
title_fullStr | Influence of Carbon Fibre Reinforced Polymer and Recycled Carbon Fibres on the compressive behaviour of self-compacting high-performance fibre-reinforced concrete |
title_full_unstemmed | Influence of Carbon Fibre Reinforced Polymer and Recycled Carbon Fibres on the compressive behaviour of self-compacting high-performance fibre-reinforced concrete |
title_short | Influence of Carbon Fibre Reinforced Polymer and Recycled Carbon Fibres on the compressive behaviour of self-compacting high-performance fibre-reinforced concrete |
title_sort | influence of carbon fibre reinforced polymer and recycled carbon fibres on the compressive behaviour of self compacting high performance fibre reinforced concrete |
topic | external reinforcement fibre-reinforced concrete high-performance concrete recycled carbonfibres self-compacting concrete waste processing |
url | https://journals.pan.pl/Content/127737/PDF/art04_int.pdf |
work_keys_str_mv | AT krzysztofostrowski influenceofcarbonfibrereinforcedpolymerandrecycledcarbonfibresonthecompressivebehaviourofselfcompactinghighperformancefibrereinforcedconcrete AT kazimierzfurtak influenceofcarbonfibrereinforcedpolymerandrecycledcarbonfibresonthecompressivebehaviourofselfcompactinghighperformancefibrereinforcedconcrete |