Design and analysis of a highly sensitive SPR based PCF biosensor with double step dual peak shift sensitivity

This paper introduces a comprehensive study of a quad-cluster multi-functional Photonic Crystal Fiber (PCF) sensor where gold and Aluminum doped with zinc oxide (AZO) were used as plasmonic materials. A maximum Amplitude Sensitivity (AS) of 5336 RIU−1 and Wavelength Sensitivity (WS) of 40,500 nm/RIU...

Full description

Bibliographic Details
Main Authors: Mohammad Rakibul Islam, Md Moinul Islam Khan, Ahmad Jarif Yeasir, Fariha Mehjabin, Jannat Ara Mim, Jubair Alam Chowdhury, Tajuddin Ahmed Nahid, Mohibul Islam
Format: Article
Language:English
Published: Elsevier 2023-08-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S240584402305990X
Description
Summary:This paper introduces a comprehensive study of a quad-cluster multi-functional Photonic Crystal Fiber (PCF) sensor where gold and Aluminum doped with zinc oxide (AZO) were used as plasmonic materials. A maximum Amplitude Sensitivity (AS) of 5336 RIU−1 and Wavelength Sensitivity (WS) of 40,500 nm/RIU in y pol was obtained incorporating Gold as plasmonic material. When AZO was included as the plasmonic material, AS of 3763 RIU−1 & WS of 9100 nm/RIU for y polarization were determined. The RI detecting range was increased from 1.32 to 1.43 to 1.19–1.42 after using AZO instead of Au that opens up a new horizon for detection. A novel detection technique, ‘Double Step Dual Peak Shift Sensitivity (DS-DPSS)’ was proposed in sensing temperature where highest sensitivity of 1.05 nm/°C having resolution of 0.095 °C for x pol. was achieved. Due to its diverse functionality, the suggested sensor represents a significant advancement in the detection of numerous analytes in biochemical applications.
ISSN:2405-8440