Rolling Bearing Fault Diagnosis based on Wavelet and Deep Wavelet Auto-encoder
Aiming at the problem that it is difficult to accurately identify the fault severities and compound faults of rolling bearings,a method based on lifting dual-tree complex wavelet packet(LDTCWP)and deep wavelet auto-encoder (DWAE) is proposed. Firstly,the transfer learning strategy is introduced to e...
Päätekijät: | Xiaolei Du, Zhigang Chen, Nan Zhang, Xingguo Guo |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | zho |
Julkaistu: |
Editorial Office of Journal of Mechanical Transmission
2019-09-01
|
Sarja: | Jixie chuandong |
Aiheet: | |
Linkit: | http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2019.09.017 |
Samankaltaisia teoksia
-
ROLLING BEARING FAULT DIAGNOSIS MЕТHOD BASED ON MORLET WAVELET AND CART DECISION TREE
Tekijä: LIU JunLi, et al.
Julkaistu: (2024-02-01) -
FAULT DIAGNOSIS NEW METHOD OF ROLLING BEARING BASED ON ADAPTIVE REDUNDANT LIFTING SCHEME PACKET
Tekijä: XIAO ShunGen, et al.
Julkaistu: (2015-01-01) -
Rolling Bearing Performance Degradation Assessment based on the Wavelet Packet Tsallis Entropy and FCM
Tekijä: Zhou Jianmin, et al.
Julkaistu: (2016-01-01) -
APPLICATION OF COMPRESSIVE SENSING AND IMPROVED DEEP WAVELET NEURAL NETWORK IN BEARING FAULT DIAGNOSIS
Tekijä: DU XiaoLei, et al.
Julkaistu: (2020-01-01) -
Wavelet and Wavelet Packet Analysis For Image Denoising
Tekijä: Aymen Dawood Salman
Julkaistu: (2009-06-01)