Normalized solutions for a coupled fractional Schrödinger system in low dimensions

Abstract We consider the following coupled fractional Schrödinger system: { ( − Δ ) s u + λ 1 u = μ 1 | u | 2 p − 2 u + β | v | p | u | p − 2 u , ( − Δ ) s v + λ 2 v = μ 2 | v | 2 p − 2 v + β | u | p | v | p − 2 v in  R N , $$ \textstyle\begin{cases} (-\Delta )^{s}u+\lambda _{1}u=\mu _{1} \vert u \v...

Full description

Bibliographic Details
Main Authors: Meng Li, Jinchun He, Haoyuan Xu, Meihua Yang
Format: Article
Language:English
Published: SpringerOpen 2020-10-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-020-01463-9
_version_ 1818341424153755648
author Meng Li
Jinchun He
Haoyuan Xu
Meihua Yang
author_facet Meng Li
Jinchun He
Haoyuan Xu
Meihua Yang
author_sort Meng Li
collection DOAJ
description Abstract We consider the following coupled fractional Schrödinger system: { ( − Δ ) s u + λ 1 u = μ 1 | u | 2 p − 2 u + β | v | p | u | p − 2 u , ( − Δ ) s v + λ 2 v = μ 2 | v | 2 p − 2 v + β | u | p | v | p − 2 v in  R N , $$ \textstyle\begin{cases} (-\Delta )^{s}u+\lambda _{1}u=\mu _{1} \vert u \vert ^{2p-2}u+ \beta \vert v \vert ^{p} \vert u \vert ^{p-2}u, \\ (-\Delta )^{s}v+\lambda _{2}v=\mu _{2} \vert v \vert ^{2p-2}v+\beta \vert u \vert ^{p} \vert v \vert ^{p-2}v \end{cases}\displaystyle \quad \text{in } {\mathbb{R}^{N}}, $$ with 0 < s < 1 $0< s<1$ , 2 s < N ≤ 4 s $2s< N\le 4s$ and 1 + 2 s N < p < N N − 2 s $1+\frac{2s}{N}< p<\frac{N}{N-2s}$ , under the following constraint: ∫ R N | u | 2 d x = a 1 2 and ∫ R N | v | 2 d x = a 2 2 . $$ \int _{\mathbb{R}^{N}} \vert u \vert ^{2}\,dx=a_{1}^{2} \quad \text{and}\quad \int _{ \mathbb{R}^{N}} \vert v \vert ^{2}\,dx=a_{2}^{2}. $$ Assuming that the parameters μ 1 $\mu _{1}$ , μ 2 $\mu _{2}$ , a 1 $a_{1}$ , a 2 $a_{2}$ are fixed quantities, we prove the existence of normalized solution for different ranges of the coupling parameter β > 0 $\beta >0$ .
first_indexed 2024-12-13T15:58:34Z
format Article
id doaj.art-819c79d5e8ef4ac2acd130ba9612f5e8
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-13T15:58:34Z
publishDate 2020-10-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-819c79d5e8ef4ac2acd130ba9612f5e82022-12-21T23:39:15ZengSpringerOpenBoundary Value Problems1687-27702020-10-012020112910.1186/s13661-020-01463-9Normalized solutions for a coupled fractional Schrödinger system in low dimensionsMeng Li0Jinchun He1Haoyuan Xu2Meihua Yang3School of Mathematics and Statistics, Huazhong University of Science and TechnologySchool of Mathematics and Statistics, Huazhong University of Science and TechnologySchool of Mathematics and Statistics, Huazhong University of Science and TechnologySchool of Mathematics and Statistics, Huazhong University of Science and TechnologyAbstract We consider the following coupled fractional Schrödinger system: { ( − Δ ) s u + λ 1 u = μ 1 | u | 2 p − 2 u + β | v | p | u | p − 2 u , ( − Δ ) s v + λ 2 v = μ 2 | v | 2 p − 2 v + β | u | p | v | p − 2 v in  R N , $$ \textstyle\begin{cases} (-\Delta )^{s}u+\lambda _{1}u=\mu _{1} \vert u \vert ^{2p-2}u+ \beta \vert v \vert ^{p} \vert u \vert ^{p-2}u, \\ (-\Delta )^{s}v+\lambda _{2}v=\mu _{2} \vert v \vert ^{2p-2}v+\beta \vert u \vert ^{p} \vert v \vert ^{p-2}v \end{cases}\displaystyle \quad \text{in } {\mathbb{R}^{N}}, $$ with 0 < s < 1 $0< s<1$ , 2 s < N ≤ 4 s $2s< N\le 4s$ and 1 + 2 s N < p < N N − 2 s $1+\frac{2s}{N}< p<\frac{N}{N-2s}$ , under the following constraint: ∫ R N | u | 2 d x = a 1 2 and ∫ R N | v | 2 d x = a 2 2 . $$ \int _{\mathbb{R}^{N}} \vert u \vert ^{2}\,dx=a_{1}^{2} \quad \text{and}\quad \int _{ \mathbb{R}^{N}} \vert v \vert ^{2}\,dx=a_{2}^{2}. $$ Assuming that the parameters μ 1 $\mu _{1}$ , μ 2 $\mu _{2}$ , a 1 $a_{1}$ , a 2 $a_{2}$ are fixed quantities, we prove the existence of normalized solution for different ranges of the coupling parameter β > 0 $\beta >0$ .http://link.springer.com/article/10.1186/s13661-020-01463-9Fractional LaplacianSchrödinger systemPositive radial solution
spellingShingle Meng Li
Jinchun He
Haoyuan Xu
Meihua Yang
Normalized solutions for a coupled fractional Schrödinger system in low dimensions
Boundary Value Problems
Fractional Laplacian
Schrödinger system
Positive radial solution
title Normalized solutions for a coupled fractional Schrödinger system in low dimensions
title_full Normalized solutions for a coupled fractional Schrödinger system in low dimensions
title_fullStr Normalized solutions for a coupled fractional Schrödinger system in low dimensions
title_full_unstemmed Normalized solutions for a coupled fractional Schrödinger system in low dimensions
title_short Normalized solutions for a coupled fractional Schrödinger system in low dimensions
title_sort normalized solutions for a coupled fractional schrodinger system in low dimensions
topic Fractional Laplacian
Schrödinger system
Positive radial solution
url http://link.springer.com/article/10.1186/s13661-020-01463-9
work_keys_str_mv AT mengli normalizedsolutionsforacoupledfractionalschrodingersysteminlowdimensions
AT jinchunhe normalizedsolutionsforacoupledfractionalschrodingersysteminlowdimensions
AT haoyuanxu normalizedsolutionsforacoupledfractionalschrodingersysteminlowdimensions
AT meihuayang normalizedsolutionsforacoupledfractionalschrodingersysteminlowdimensions