Spatiotemporal Dynamics of Sleep Spindle Sources Across NREM Sleep Cycles
The existence of two different types of sleep spindles (slow and fast) is well-established, according to their topographical distribution at scalp- and cortical-level. Our aim was to provide a systematic investigation focused on the temporal evolution of sleep spindle sources during non-rapid eye mo...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-07-01
|
Series: | Frontiers in Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fnins.2019.00727/full |
_version_ | 1811280730203881472 |
---|---|
author | Valentina Alfonsi Aurora D’Atri Maurizio Gorgoni Serena Scarpelli Anastasia Mangiaruga Michele Ferrara Luigi De Gennaro Luigi De Gennaro |
author_facet | Valentina Alfonsi Aurora D’Atri Maurizio Gorgoni Serena Scarpelli Anastasia Mangiaruga Michele Ferrara Luigi De Gennaro Luigi De Gennaro |
author_sort | Valentina Alfonsi |
collection | DOAJ |
description | The existence of two different types of sleep spindles (slow and fast) is well-established, according to their topographical distribution at scalp- and cortical-level. Our aim was to provide a systematic investigation focused on the temporal evolution of sleep spindle sources during non-rapid eye movement (NREM) sleep. Spindle activity was recorded and automatically detected in 20 healthy subjects. Low resolution brain electromagnetic tomography (LORETA) was applied for the EEG source localization. Aiming to evaluate the time course of the detected slow and fast spindle sources, we considered the first four NREM sleep cycles and divided each cycle into five intervals of equal duration. We confirmed the preferential localization in the frontal (Brodmann area 10) and parietal (Brodmann area 7) cortical regions, respectively for slow (11.0–12.5) and fast (13.0–14.5) spindles. Across subsequent NREM sleep episodes, the maximal source activation remained systematically located in Brodmann area 10 and Brodmann area 7, showing the topographical stability of the detected generators. However, a different time course was observed as a function of the type of spindles: a linear decrease across subsequent cycles was found for slow spindle but not for fast spindle source. The intra-cycle variations followed a “U” shaped curve for both spindle source, with a trough around third and fourth interval (middle part) and the highest values at the beginning and the end of the considered temporal window. We confirmed the involvement of the frontal and parietal brain regions in spindle generation, showing for the first time their changes within and between consecutive NREM sleep episodes. Our results point to a correspondence between the scalp-recorded electrical activity and the underlying source topography, supporting the notion that spindles are not uniform phenomena: complex region- and time-specific patterns are involved in their generation and manifestation. |
first_indexed | 2024-04-13T01:20:02Z |
format | Article |
id | doaj.art-81b12c0a5cea44068730ddc3a750a96d |
institution | Directory Open Access Journal |
issn | 1662-453X |
language | English |
last_indexed | 2024-04-13T01:20:02Z |
publishDate | 2019-07-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Neuroscience |
spelling | doaj.art-81b12c0a5cea44068730ddc3a750a96d2022-12-22T03:08:47ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2019-07-011310.3389/fnins.2019.00727461196Spatiotemporal Dynamics of Sleep Spindle Sources Across NREM Sleep CyclesValentina Alfonsi0Aurora D’Atri1Maurizio Gorgoni2Serena Scarpelli3Anastasia Mangiaruga4Michele Ferrara5Luigi De Gennaro6Luigi De Gennaro7Department of Psychology, Sapienza University of Rome, Rome, ItalyDepartment of Psychology, Sapienza University of Rome, Rome, ItalyDepartment of Psychology, Sapienza University of Rome, Rome, ItalyDepartment of Psychology, Sapienza University of Rome, Rome, ItalyDepartment of Psychology, Sapienza University of Rome, Rome, ItalyDepartment of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, ItalyDepartment of Psychology, Sapienza University of Rome, Rome, ItalyIRCCS Santa Lucia Foundation, Rome, ItalyThe existence of two different types of sleep spindles (slow and fast) is well-established, according to their topographical distribution at scalp- and cortical-level. Our aim was to provide a systematic investigation focused on the temporal evolution of sleep spindle sources during non-rapid eye movement (NREM) sleep. Spindle activity was recorded and automatically detected in 20 healthy subjects. Low resolution brain electromagnetic tomography (LORETA) was applied for the EEG source localization. Aiming to evaluate the time course of the detected slow and fast spindle sources, we considered the first four NREM sleep cycles and divided each cycle into five intervals of equal duration. We confirmed the preferential localization in the frontal (Brodmann area 10) and parietal (Brodmann area 7) cortical regions, respectively for slow (11.0–12.5) and fast (13.0–14.5) spindles. Across subsequent NREM sleep episodes, the maximal source activation remained systematically located in Brodmann area 10 and Brodmann area 7, showing the topographical stability of the detected generators. However, a different time course was observed as a function of the type of spindles: a linear decrease across subsequent cycles was found for slow spindle but not for fast spindle source. The intra-cycle variations followed a “U” shaped curve for both spindle source, with a trough around third and fourth interval (middle part) and the highest values at the beginning and the end of the considered temporal window. We confirmed the involvement of the frontal and parietal brain regions in spindle generation, showing for the first time their changes within and between consecutive NREM sleep episodes. Our results point to a correspondence between the scalp-recorded electrical activity and the underlying source topography, supporting the notion that spindles are not uniform phenomena: complex region- and time-specific patterns are involved in their generation and manifestation.https://www.frontiersin.org/article/10.3389/fnins.2019.00727/fullsleep spindlesslow/fast spindlesEEG source localizationLORETAtime course |
spellingShingle | Valentina Alfonsi Aurora D’Atri Maurizio Gorgoni Serena Scarpelli Anastasia Mangiaruga Michele Ferrara Luigi De Gennaro Luigi De Gennaro Spatiotemporal Dynamics of Sleep Spindle Sources Across NREM Sleep Cycles Frontiers in Neuroscience sleep spindles slow/fast spindles EEG source localization LORETA time course |
title | Spatiotemporal Dynamics of Sleep Spindle Sources Across NREM Sleep Cycles |
title_full | Spatiotemporal Dynamics of Sleep Spindle Sources Across NREM Sleep Cycles |
title_fullStr | Spatiotemporal Dynamics of Sleep Spindle Sources Across NREM Sleep Cycles |
title_full_unstemmed | Spatiotemporal Dynamics of Sleep Spindle Sources Across NREM Sleep Cycles |
title_short | Spatiotemporal Dynamics of Sleep Spindle Sources Across NREM Sleep Cycles |
title_sort | spatiotemporal dynamics of sleep spindle sources across nrem sleep cycles |
topic | sleep spindles slow/fast spindles EEG source localization LORETA time course |
url | https://www.frontiersin.org/article/10.3389/fnins.2019.00727/full |
work_keys_str_mv | AT valentinaalfonsi spatiotemporaldynamicsofsleepspindlesourcesacrossnremsleepcycles AT auroradatri spatiotemporaldynamicsofsleepspindlesourcesacrossnremsleepcycles AT mauriziogorgoni spatiotemporaldynamicsofsleepspindlesourcesacrossnremsleepcycles AT serenascarpelli spatiotemporaldynamicsofsleepspindlesourcesacrossnremsleepcycles AT anastasiamangiaruga spatiotemporaldynamicsofsleepspindlesourcesacrossnremsleepcycles AT micheleferrara spatiotemporaldynamicsofsleepspindlesourcesacrossnremsleepcycles AT luigidegennaro spatiotemporaldynamicsofsleepspindlesourcesacrossnremsleepcycles AT luigidegennaro spatiotemporaldynamicsofsleepspindlesourcesacrossnremsleepcycles |