On the stability and integration of Hamilton-Poisson systems on so(3)*_

We consider inhomogeneous quadratic Hamilton-Poisson systems on the Lie-Poisson space so(3)*_. There are nine such systems up to affine equivalence. We investigate the stability nature of the equilibria for each of these systems. For a subclass of systems, we find explicit expressions for the inte...

Full description

Bibliographic Details
Main Authors: R. M. Adams, R. Biggs, W. Holderbaum, C. C. Remsing
Format: Article
Language:English
Published: Sapienza Università Editrice 2016-01-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2016(1-2)/1-42.pdf
_version_ 1828943009847181312
author R. M. Adams
R. Biggs
W. Holderbaum
C. C. Remsing
author_facet R. M. Adams
R. Biggs
W. Holderbaum
C. C. Remsing
author_sort R. M. Adams
collection DOAJ
description We consider inhomogeneous quadratic Hamilton-Poisson systems on the Lie-Poisson space so(3)*_. There are nine such systems up to affine equivalence. We investigate the stability nature of the equilibria for each of these systems. For a subclass of systems, we find explicit expressions for the integral curves in terms of Jacobi elliptic functions.
first_indexed 2024-12-14T04:06:03Z
format Article
id doaj.art-81ba895e7e054ecda2a4cb8e1fed9681
institution Directory Open Access Journal
issn 1120-7183
2532-3350
language English
last_indexed 2024-12-14T04:06:03Z
publishDate 2016-01-01
publisher Sapienza Università Editrice
record_format Article
series Rendiconti di Matematica e delle Sue Applicazioni
spelling doaj.art-81ba895e7e054ecda2a4cb8e1fed96812022-12-21T23:17:49ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33502016-01-01371-2142On the stability and integration of Hamilton-Poisson systems on so(3)*_R. M. Adams0R. Biggs1W. Holderbaum2C. C. Remsing3Department of Mathematics, Rhodes UniversityDepartment of Mathematics, Rhodes UniversitySchool of Systems Engineering, University of ReadingDepartment of Mathematics, Rhodes UniversityWe consider inhomogeneous quadratic Hamilton-Poisson systems on the Lie-Poisson space so(3)*_. There are nine such systems up to affine equivalence. We investigate the stability nature of the equilibria for each of these systems. For a subclass of systems, we find explicit expressions for the integral curves in terms of Jacobi elliptic functions.https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2016(1-2)/1-42.pdfhamilton-poisson systemlie-poisson structurelyapunov stabilityenergy-casimir methodjacobi elliptic function
spellingShingle R. M. Adams
R. Biggs
W. Holderbaum
C. C. Remsing
On the stability and integration of Hamilton-Poisson systems on so(3)*_
Rendiconti di Matematica e delle Sue Applicazioni
hamilton-poisson system
lie-poisson structure
lyapunov stability
energy-casimir method
jacobi elliptic function
title On the stability and integration of Hamilton-Poisson systems on so(3)*_
title_full On the stability and integration of Hamilton-Poisson systems on so(3)*_
title_fullStr On the stability and integration of Hamilton-Poisson systems on so(3)*_
title_full_unstemmed On the stability and integration of Hamilton-Poisson systems on so(3)*_
title_short On the stability and integration of Hamilton-Poisson systems on so(3)*_
title_sort on the stability and integration of hamilton poisson systems on so 3
topic hamilton-poisson system
lie-poisson structure
lyapunov stability
energy-casimir method
jacobi elliptic function
url https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2016(1-2)/1-42.pdf
work_keys_str_mv AT rmadams onthestabilityandintegrationofhamiltonpoissonsystemsonso3
AT rbiggs onthestabilityandintegrationofhamiltonpoissonsystemsonso3
AT wholderbaum onthestabilityandintegrationofhamiltonpoissonsystemsonso3
AT ccremsing onthestabilityandintegrationofhamiltonpoissonsystemsonso3