Water temperature prediction in a subtropical subalpine lake using soft computing techniques

Lake water temperature is one of the key parameters in determining the ecological conditions within a lake, as it influences both chemical and biological processes. Therefore, accurate prediction of water temperature is crucially important for lake management. In this paper, the performance of soft...

Full description

Bibliographic Details
Main Authors: Saeed Samadianfard, Honeyeh Kazemi, Ozgur Kisi, Wen-Cheng Liu
Format: Article
Language:English
Published: Universidad Nacional de Colombia 2016-04-01
Series:Earth Sciences Research Journal
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/esrj/article/view/43199
_version_ 1818491365629100032
author Saeed Samadianfard
Honeyeh Kazemi
Ozgur Kisi
Wen-Cheng Liu
author_facet Saeed Samadianfard
Honeyeh Kazemi
Ozgur Kisi
Wen-Cheng Liu
author_sort Saeed Samadianfard
collection DOAJ
description Lake water temperature is one of the key parameters in determining the ecological conditions within a lake, as it influences both chemical and biological processes. Therefore, accurate prediction of water temperature is crucially important for lake management. In this paper, the performance of soft computing techniques including gene expression programming (GEP), which is a variant of genetic programming (GP), adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) to predict hourly water temperature at a buoy station in the Yuan-Yang Lake (YYL) in north-central Taiwan at various measured depths was evaluated. To evaluate the performance of the soft computing techniques, three different statistical indicators were used, including the root mean squared error (RMSE), the mean absolute error (MAE), and the coefficient of correlation (R). Results showed that the GEP had the best performances among other studied methods in the prediction of hourly water temperature at 0, 2 and 3 meter depths below water surface, but there was a different trend in the 1 meter depth below water surface. In this depth, the ANN had better accuracy than the GEP and ANFIS. Despite the error (RMSE value) is smaller in ANN than GEP, there is an upper bound in scatter plot of ANN that imposes a constant value, which is not suitable for predictive purposes. As a conclusion, results from the current study demonstrated that GEP provided moderately reasonable trends for the prediction of hourly water temperature in different depths.   Resumen La temperatura del agua es uno de los parámetros básicos para determinar las condiciones ecológicas de un lago, ya que está influenciada por procesos químicos y biológicos. Además, la exactitud en la predicción de la temperatura del agua es esencial para el manejo del lago. En este artículo se evalúa el desempeño de técnicas de soft computing como la Programación de Expresiones de Genes (PEG), que es una variante de la Programación Genética (PG), el Sistema Neuro-fuzzy de Inferencia Adaptativa (Anfis, en inglés) y las Redes Neuronales Artificiales (RNA) para predecir la temperatura del agua en diferentes niveles de una estación flotante del lago Yuan-Yang (YYL), en el centro-norte de Taiwán. Se utilizaron tres indicadores estadísticos, el Error Cuadrático Medio (ECM), el Error Absoluto Medio (MAE, en inglés) y el Coeficiente de Correlación (R) para evaluar el desempeño de las técnicas de computación. Los resultados muestran que la PEG es más exacta en la predicción de la temperatura del agua entre 0,2 y 3 metros de profundidad. Sin embargo, se evidencia una tendencia diferente a partir del metro de profundidad. A esta distancia de la superficie, las RNA son más exactas que la PEG y el Anfis. Los resultados de este estudio probaron claramente la usabilidad del PEG y las RNA en la predicción de la temperatura del agua a diferentes profundidades.
first_indexed 2024-12-10T17:29:52Z
format Article
id doaj.art-81ba8d95e45b4baba6083b292adc04d5
institution Directory Open Access Journal
issn 1794-6190
2339-3459
language English
last_indexed 2024-12-10T17:29:52Z
publishDate 2016-04-01
publisher Universidad Nacional de Colombia
record_format Article
series Earth Sciences Research Journal
spelling doaj.art-81ba8d95e45b4baba6083b292adc04d52022-12-22T01:39:44ZengUniversidad Nacional de ColombiaEarth Sciences Research Journal1794-61902339-34592016-04-0120210.15446/esrj.v20n2.4319943753Water temperature prediction in a subtropical subalpine lake using soft computing techniquesSaeed Samadianfard0Honeyeh Kazemi1Ozgur Kisi2Wen-Cheng Liu3Department of Water Engineering, University of TabrizDepartment of Water Engineering, University of TabrizDepartment of Civil Engineering, Canik Basari UniversityDepartment of Civil and Disaster Prevention Engineering, National United UniversityLake water temperature is one of the key parameters in determining the ecological conditions within a lake, as it influences both chemical and biological processes. Therefore, accurate prediction of water temperature is crucially important for lake management. In this paper, the performance of soft computing techniques including gene expression programming (GEP), which is a variant of genetic programming (GP), adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) to predict hourly water temperature at a buoy station in the Yuan-Yang Lake (YYL) in north-central Taiwan at various measured depths was evaluated. To evaluate the performance of the soft computing techniques, three different statistical indicators were used, including the root mean squared error (RMSE), the mean absolute error (MAE), and the coefficient of correlation (R). Results showed that the GEP had the best performances among other studied methods in the prediction of hourly water temperature at 0, 2 and 3 meter depths below water surface, but there was a different trend in the 1 meter depth below water surface. In this depth, the ANN had better accuracy than the GEP and ANFIS. Despite the error (RMSE value) is smaller in ANN than GEP, there is an upper bound in scatter plot of ANN that imposes a constant value, which is not suitable for predictive purposes. As a conclusion, results from the current study demonstrated that GEP provided moderately reasonable trends for the prediction of hourly water temperature in different depths.   Resumen La temperatura del agua es uno de los parámetros básicos para determinar las condiciones ecológicas de un lago, ya que está influenciada por procesos químicos y biológicos. Además, la exactitud en la predicción de la temperatura del agua es esencial para el manejo del lago. En este artículo se evalúa el desempeño de técnicas de soft computing como la Programación de Expresiones de Genes (PEG), que es una variante de la Programación Genética (PG), el Sistema Neuro-fuzzy de Inferencia Adaptativa (Anfis, en inglés) y las Redes Neuronales Artificiales (RNA) para predecir la temperatura del agua en diferentes niveles de una estación flotante del lago Yuan-Yang (YYL), en el centro-norte de Taiwán. Se utilizaron tres indicadores estadísticos, el Error Cuadrático Medio (ECM), el Error Absoluto Medio (MAE, en inglés) y el Coeficiente de Correlación (R) para evaluar el desempeño de las técnicas de computación. Los resultados muestran que la PEG es más exacta en la predicción de la temperatura del agua entre 0,2 y 3 metros de profundidad. Sin embargo, se evidencia una tendencia diferente a partir del metro de profundidad. A esta distancia de la superficie, las RNA son más exactas que la PEG y el Anfis. Los resultados de este estudio probaron claramente la usabilidad del PEG y las RNA en la predicción de la temperatura del agua a diferentes profundidades.https://revistas.unal.edu.co/index.php/esrj/article/view/43199Soft computing techniquesstatistical indicatorssubalpine lakewater temperatureTécnicas soft computingindicadores estadísticoslago subalpinotemperatura del agua.
spellingShingle Saeed Samadianfard
Honeyeh Kazemi
Ozgur Kisi
Wen-Cheng Liu
Water temperature prediction in a subtropical subalpine lake using soft computing techniques
Earth Sciences Research Journal
Soft computing techniques
statistical indicators
subalpine lake
water temperature
Técnicas soft computing
indicadores estadísticos
lago subalpino
temperatura del agua.
title Water temperature prediction in a subtropical subalpine lake using soft computing techniques
title_full Water temperature prediction in a subtropical subalpine lake using soft computing techniques
title_fullStr Water temperature prediction in a subtropical subalpine lake using soft computing techniques
title_full_unstemmed Water temperature prediction in a subtropical subalpine lake using soft computing techniques
title_short Water temperature prediction in a subtropical subalpine lake using soft computing techniques
title_sort water temperature prediction in a subtropical subalpine lake using soft computing techniques
topic Soft computing techniques
statistical indicators
subalpine lake
water temperature
Técnicas soft computing
indicadores estadísticos
lago subalpino
temperatura del agua.
url https://revistas.unal.edu.co/index.php/esrj/article/view/43199
work_keys_str_mv AT saeedsamadianfard watertemperaturepredictioninasubtropicalsubalpinelakeusingsoftcomputingtechniques
AT honeyehkazemi watertemperaturepredictioninasubtropicalsubalpinelakeusingsoftcomputingtechniques
AT ozgurkisi watertemperaturepredictioninasubtropicalsubalpinelakeusingsoftcomputingtechniques
AT wenchengliu watertemperaturepredictioninasubtropicalsubalpinelakeusingsoftcomputingtechniques