A study of polarimetric error induced by satellite motion: application to the 3MI and similar sensors

<p>This study investigates the magnitude of the error introduced by the co-registration and interpolation in computing Stokes vector elements from observations by the Multi-viewing, Multi-channel, Multi-polarisation Imager (3MI). The Stokes parameter derivation from the 3MI measurements requir...

Full description

Bibliographic Details
Main Authors: S. Hioki, J. Riedi, M. S. Djellali
Format: Article
Language:English
Published: Copernicus Publications 2021-03-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/1801/2021/amt-14-1801-2021.pdf
Description
Summary:<p>This study investigates the magnitude of the error introduced by the co-registration and interpolation in computing Stokes vector elements from observations by the Multi-viewing, Multi-channel, Multi-polarisation Imager (3MI). The Stokes parameter derivation from the 3MI measurements requires the syntheses of three wide-field-of-view images taken by the instrument at 0.25 s interval with polarizers at different angles. Even though the synthesis of spatially or temporally inhomogeneous data is inevitable for a number of polarimetric instruments, it is particularly challenging for 3MI because of the instrument design, which prioritizes the stability during a long life cycle and enables the wide-field-of-view and multiwavelength capabilities. This study therefore focuses on 3MI's motion-induced error brought in by the co-registration and interpolation that are necessary for the synthesis of three images. The 2-D polarimetric measurements from the Second-generation Global Imager (SGLI) are weighted and averaged to produce two proxy datasets of the 3MI measurements, with and without considering the effect of the satellite motion along the orbit. The comparison of these two datasets shows that the motion-induced error is not symmetric about zero and not negligible when the intensity variability of the observed scene is large. The results are analyzed in five categories of pixels: (1) cloud over water, (2) clear sky over water, (3) coastlines, (4) cloud over land, and (5) clear sky over land. The most spread distribution of normalized polarized radiance (<span class="inline-formula"><i>L</i><sub>p</sub></span>) difference is in the cloud-over-water class, and the most spread distribution of degree of linear polarization (DOLP) difference is in the clear-sky-over-water class. The 5th to 95th percentile ranges of <span class="inline-formula"><i>L</i><sub>p</sub></span> difference for each class are (1) [<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.0051</mn><mo>,</mo><mn mathvariant="normal">0.012</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="75pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="f4f90a041038d7e407c0708f7af9ff8a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-1801-2021-ie00001.svg" width="75pt" height="11pt" src="amt-14-1801-2021-ie00001.png"/></svg:svg></span></span>], (2) [<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.0040</mn><mo>,</mo><mn mathvariant="normal">0.0088</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="81pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="38e8b3627963758ebfc7bcd95eff4135"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-1801-2021-ie00002.svg" width="81pt" height="11pt" src="amt-14-1801-2021-ie00002.png"/></svg:svg></span></span>], (3) [<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.0033</mn><mo>,</mo><mn mathvariant="normal">0.012</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="75pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="66bfb3d9094539fdad0eeec2d214d483"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-1801-2021-ie00003.svg" width="75pt" height="11pt" src="amt-14-1801-2021-ie00003.png"/></svg:svg></span></span>], (4) [<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.0033</mn><mo>,</mo><mn mathvariant="normal">0.0062</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="81pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="9e02cee55d292f6b4f56b49131f3f727"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-1801-2021-ie00004.svg" width="81pt" height="11pt" src="amt-14-1801-2021-ie00004.png"/></svg:svg></span></span>], and (5) [<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.0023</mn><mo>,</mo><mn mathvariant="normal">0.0032</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="81pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="bdaafe7b48e967755bd17e974687372f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-1801-2021-ie00005.svg" width="81pt" height="11pt" src="amt-14-1801-2021-ie00005.png"/></svg:svg></span></span>]. The same percentile range of DOLP difference for each class are (1) [<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.023</mn><mo>,</mo><mn mathvariant="normal">0.060</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="f0398b31bef0ffb3cb6f41350819e8b8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-1801-2021-ie00006.svg" width="69pt" height="11pt" src="amt-14-1801-2021-ie00006.png"/></svg:svg></span></span>], (2) [<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.043</mn><mo>,</mo><mn mathvariant="normal">0.093</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="a53be921cf5868f00fb554d118cb8a40"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-1801-2021-ie00007.svg" width="69pt" height="11pt" src="amt-14-1801-2021-ie00007.png"/></svg:svg></span></span>], (3) [<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.019</mn><mo>,</mo><mn mathvariant="normal">0.082</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="3c77071906e97bc03f3462143a91cf35"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-1801-2021-ie00008.svg" width="69pt" height="11pt" src="amt-14-1801-2021-ie00008.png"/></svg:svg></span></span>], (4) [<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.0075</mn><mo>,</mo><mn mathvariant="normal">0.014</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="75pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="56b27af29fcc25c3e018f26d1ba40674"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-1801-2021-ie00009.svg" width="75pt" height="11pt" src="amt-14-1801-2021-ie00009.png"/></svg:svg></span></span>], and (5) [<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.011</mn><mo>,</mo><mn mathvariant="normal">0.016</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="6abcabbbfb4827f96fa136d3c9aa2230"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-1801-2021-ie00010.svg" width="69pt" height="11pt" src="amt-14-1801-2021-ie00010.png"/></svg:svg></span></span>]. The medians of the <span class="inline-formula"><i>L</i><sub>p</sub></span> difference are (1) 0.00035, (2) 0.000049, (3) 0.00031, (4), 0.000089, and (5) 0.000037, whereas the medians of the DOLP difference are (1) 0.0014, (2) 0.0015, (3) 0.0025, (4) 0.00027, and (5) 0.00014. A model using Monte Carlo simulation confirms that the magnitude of these errors over clouds are closely related to the spatial correlation in the horizontal cloud structure. For the cloud-over-water category, it is shown that the error model developed in this study can statistically simulate the magnitude and trends of the 3MI's motion-induced error estimated from SGLI data. The obtained statistics and the simulation technique can be utilized to provide pixel-level quality information for 3MI Level 1B products. In addition, the simulation method can be applied to the past, current, and future spaceborne instruments with a similar design.</p>
ISSN:1867-1381
1867-8548