Topological Analysis of the Type 3 Secretion System Translocon Pore Protein IpaC following Its Native Delivery to the Plasma Membrane during Infection

ABSTRACT Many Gram-negative bacterial pathogens require a type 3 secretion system (T3SS) to deliver effector proteins into eukaryotic cells. Contact of the tip complex of the T3SS with a target eukaryotic cell initiates secretion of the two bacterial proteins that assemble into the translocon pore i...

Full description

Bibliographic Details
Main Authors: Brian C. Russo, Jeffrey K. Duncan, Marcia B. Goldberg
Format: Article
Language:English
Published: American Society for Microbiology 2019-06-01
Series:mBio
Subjects:
Online Access:https://journals.asm.org/doi/10.1128/mBio.00877-19
_version_ 1831677021051158528
author Brian C. Russo
Jeffrey K. Duncan
Marcia B. Goldberg
author_facet Brian C. Russo
Jeffrey K. Duncan
Marcia B. Goldberg
author_sort Brian C. Russo
collection DOAJ
description ABSTRACT Many Gram-negative bacterial pathogens require a type 3 secretion system (T3SS) to deliver effector proteins into eukaryotic cells. Contact of the tip complex of the T3SS with a target eukaryotic cell initiates secretion of the two bacterial proteins that assemble into the translocon pore in the plasma membrane. The translocon pore functions to regulate effector protein secretion and is the conduit for effector protein translocation across the plasma membrane. To generate insights into how the translocon pore regulates effector protein secretion, we defined the topology of the Shigella translocon pore protein IpaC in the plasma membrane following its native delivery by the T3SS. Using single cysteine substitution mutagenesis and site-directed labeling with a membrane-impermeant chemical probe, we mapped residues accessible from the extracellular surface of the cell. Our data support a model in which the N terminus of IpaC is extracellular and the C terminus of IpaC is intracellular. These findings resolve previously conflicting data on IpaC topology that were based on nonnative delivery of IpaC to membranes. Salmonella enterica serovar Typhimurium also requires the T3SS for effector protein delivery into eukaryotic cells. Although the sequence of IpaC is closely related to the Salmonella translocon pore protein SipC, the two proteins have unique functional attributes during infection. We showed a similar overall topology for SipC and IpaC and identified subtle topological differences between their transmembrane α-helixes and C-terminal regions. Together, our data suggest that topological differences among distinct translocon pore proteins may dictate organism-specific functional differences of the T3SSs during infection. IMPORTANCE The type 3 secretion system (T3SS) is a nanomachine required for virulence of many bacterial pathogens that infect humans. The system delivers bacterial virulence proteins into the cytosol of human cells, where the virulence proteins promote bacterial infection. The T3SS forms a translocon pore in the membranes of target cells. This pore is the portal through which bacterial virulence proteins are delivered by the T3SS into the eukaryotic cytosol. The pore also regulates secretion of these virulence proteins. Our work defines the topology of translocon pore proteins in their native context during infection, resolves previously conflicting reports about the topology of the Shigella translocon pore protein IpaC, and provides new insights into how interactions of the pore with the T3SS likely produce signals that activate secretion of virulence proteins.
first_indexed 2024-12-20T04:34:30Z
format Article
id doaj.art-81d33601ba294611b2a8188cfc568889
institution Directory Open Access Journal
issn 2150-7511
language English
last_indexed 2024-12-20T04:34:30Z
publishDate 2019-06-01
publisher American Society for Microbiology
record_format Article
series mBio
spelling doaj.art-81d33601ba294611b2a8188cfc5688892022-12-21T19:53:18ZengAmerican Society for MicrobiologymBio2150-75112019-06-0110310.1128/mBio.00877-19Topological Analysis of the Type 3 Secretion System Translocon Pore Protein IpaC following Its Native Delivery to the Plasma Membrane during InfectionBrian C. Russo0Jeffrey K. Duncan1Marcia B. Goldberg2Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USADivision of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USADivision of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USAABSTRACT Many Gram-negative bacterial pathogens require a type 3 secretion system (T3SS) to deliver effector proteins into eukaryotic cells. Contact of the tip complex of the T3SS with a target eukaryotic cell initiates secretion of the two bacterial proteins that assemble into the translocon pore in the plasma membrane. The translocon pore functions to regulate effector protein secretion and is the conduit for effector protein translocation across the plasma membrane. To generate insights into how the translocon pore regulates effector protein secretion, we defined the topology of the Shigella translocon pore protein IpaC in the plasma membrane following its native delivery by the T3SS. Using single cysteine substitution mutagenesis and site-directed labeling with a membrane-impermeant chemical probe, we mapped residues accessible from the extracellular surface of the cell. Our data support a model in which the N terminus of IpaC is extracellular and the C terminus of IpaC is intracellular. These findings resolve previously conflicting data on IpaC topology that were based on nonnative delivery of IpaC to membranes. Salmonella enterica serovar Typhimurium also requires the T3SS for effector protein delivery into eukaryotic cells. Although the sequence of IpaC is closely related to the Salmonella translocon pore protein SipC, the two proteins have unique functional attributes during infection. We showed a similar overall topology for SipC and IpaC and identified subtle topological differences between their transmembrane α-helixes and C-terminal regions. Together, our data suggest that topological differences among distinct translocon pore proteins may dictate organism-specific functional differences of the T3SSs during infection. IMPORTANCE The type 3 secretion system (T3SS) is a nanomachine required for virulence of many bacterial pathogens that infect humans. The system delivers bacterial virulence proteins into the cytosol of human cells, where the virulence proteins promote bacterial infection. The T3SS forms a translocon pore in the membranes of target cells. This pore is the portal through which bacterial virulence proteins are delivered by the T3SS into the eukaryotic cytosol. The pore also regulates secretion of these virulence proteins. Our work defines the topology of translocon pore proteins in their native context during infection, resolves previously conflicting reports about the topology of the Shigella translocon pore protein IpaC, and provides new insights into how interactions of the pore with the T3SS likely produce signals that activate secretion of virulence proteins.https://journals.asm.org/doi/10.1128/mBio.00877-19IpaCSalmonellaShigella flexneriSipCtopologytype 3 secretion
spellingShingle Brian C. Russo
Jeffrey K. Duncan
Marcia B. Goldberg
Topological Analysis of the Type 3 Secretion System Translocon Pore Protein IpaC following Its Native Delivery to the Plasma Membrane during Infection
mBio
IpaC
Salmonella
Shigella flexneri
SipC
topology
type 3 secretion
title Topological Analysis of the Type 3 Secretion System Translocon Pore Protein IpaC following Its Native Delivery to the Plasma Membrane during Infection
title_full Topological Analysis of the Type 3 Secretion System Translocon Pore Protein IpaC following Its Native Delivery to the Plasma Membrane during Infection
title_fullStr Topological Analysis of the Type 3 Secretion System Translocon Pore Protein IpaC following Its Native Delivery to the Plasma Membrane during Infection
title_full_unstemmed Topological Analysis of the Type 3 Secretion System Translocon Pore Protein IpaC following Its Native Delivery to the Plasma Membrane during Infection
title_short Topological Analysis of the Type 3 Secretion System Translocon Pore Protein IpaC following Its Native Delivery to the Plasma Membrane during Infection
title_sort topological analysis of the type 3 secretion system translocon pore protein ipac following its native delivery to the plasma membrane during infection
topic IpaC
Salmonella
Shigella flexneri
SipC
topology
type 3 secretion
url https://journals.asm.org/doi/10.1128/mBio.00877-19
work_keys_str_mv AT briancrusso topologicalanalysisofthetype3secretionsystemtransloconporeproteinipacfollowingitsnativedeliverytotheplasmamembraneduringinfection
AT jeffreykduncan topologicalanalysisofthetype3secretionsystemtransloconporeproteinipacfollowingitsnativedeliverytotheplasmamembraneduringinfection
AT marciabgoldberg topologicalanalysisofthetype3secretionsystemtransloconporeproteinipacfollowingitsnativedeliverytotheplasmamembraneduringinfection